Characterization of four different bipolar charging devices for nanoparticle charge conditioning

  • Peter KallingerEmail author
  • Gerhard Steiner
  • Wladyslaw W. Szymanski
Brief Communication


Well-defined charge conditioning of nanoparticles is a prerequisite for a number of particle measuring techniques. We investigated two different soft X-ray devices (custom-built and TSI advanced aerosol neutralizer) an AC-corona discharge device (MSP electrical ionizer) and a radioactivity based Am-241 charger as a reference. Electrical mobility size distributions of positive and negative ions created in all devices were determined and their applicability for particle charging examined. The mobility spectra of the positive ions were found to be quite comparable for all chargers with a mean mobility of 1.50–1.60 cm2 V−1 s−1, whereas the spectra of the negative ions show differences in morphology leading to a broader range of mean mobilities (1.68–2.09 cm2 V−1 s−1). However, results confirm that under the selected experimental conditions the charge equilibrium related to bipolar diffusion charging process was obtained in all charging devices.


Bipolar ions Radioactive source Soft X-ray AC-corona discharge Nanoparticles Charge conditioning 



This research was supported in part by the Austrian Science Foundation (FWF), Project Nr. TRP29 and Project Nr. P20837-N20. Authors express theirs thanks to Georg Reischl (retired from the Faculty of Physics, University of Vienna) for providing the UDMA equipment and to the TSI Inc. for the AAN device.


  1. Biskos G, Reavell K, Collings N (2005) Unipolar diffusion charging of aerosol particles in the transition regime. J Aerosol Sci. doi: 10.1016/j.jaerosci.2004.09.002
  2. Burtscher H, Scherrer L, Siegmann HC, Schmidt-Ott A, Federer B (1982) Probing aerosols by photoelectric charging. J Appl Phys. doi: 10.1063/1.331120
  3. De Juan L, Fernández de la Mora J (1998) High resolution size analysis of nanoparticles and ions: running a Vienna DMA of near optimal length at Reynolds numbers up to 5000. J Aerosol Sci. doi: 10.1016/S0021-8502(97)10028-3
  4. Erikson HA (1922) On the nature of the negative and positive ions in air, oxygen and nitrogen. Phys Rev. doi: 10.1103/PhysRev.20.117
  5. Fuchs NA (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis Pura Appl doi: 10.1007/BF01993343
  6. Goldman M, Goldman A, Sigmond RS (1985) The corona discharge, its properties and specific uses. Pure Appl Chem. doi: 10.1351/pac198557091353
  7. Han B, Shimada M, Okuyama K, Choi M (2003) Classification of monodisperse aerosol particles using an adjustable soft X-ray charger. Powder Technol. doi: 10.1016/S0032-5910(03)00167-0
  8. Huertas ML, Marty AM, Fontan J, Alet I, Duffa G (1971) Measurement of mobility and mass of atmospheric ions. J Aerosol Sci. doi: 10.1016/0021-8502(71)90021-8
  9. ICSC Card database No. 1290. Accessed 9 May 2012
  10. Inaba H, Ohmi T, Yoshida T, Okada T (1994) Neutralization of static electricity by soft X-rays and vacuum UV radiation. J Electrostat. doi: 10.1016/0304-3886(94)90061-2
  11. Jung T, Burtscher H, Schmidt-Ott A (1988) Multiple charging of ultrafine aerosol particles by aerosol photoemission (APE). J Aerosol Sci. doi: 10.1016/0021-8502(88)90023-7
  12. Kallinger P (2010) Experimentelle Untersuchung der bipolaren Diffusionsbeladung von Aerosolen mit Weichröntgenstrahlung sowie der Nanopartikelbildung unter Weichröntgenstrahlung. Master thesis, University of ViennaGoogle Scholar
  13. Kaufman S (2010) Aerosol charge conditioner. US Patent No. US 7,796,727 B1Google Scholar
  14. Kilpatrick WD (1971) An experimental mass—mobility relation for ions in air at atmospheric pressure. In: Proc. 19th annu. conf. mass. spectrosc., pp 320–325Google Scholar
  15. Knutson EO, Whitby KT (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci. doi: 10.1016/0021-8502(75)90060-9
  16. Kulkarni P, Namiki N, Otani Y, Biswas P (2002) Charging of particles in unipolar coronas irradiated by in situ soft X-rays: enhancement of capture efficiency of ultrafine particles. J Aerosol Sci. doi: 10.1016/S0021-8502(02)00067-8
  17. Laschober C, Kaufman SL, Reischl G, Allmaier G, Szymanski WW (2006) Comparison between an unipolar corona charger and a polonium-based bipolar neutralizer for the analysis of nanosized particles and biopolymers. J Nanosci Nanotechnol. doi: 10.1166/jnn.2006.308
  18. Lee HM, Kim SK, Shimada M, Okuyama K (2005) Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray charger. J Aerosol Sci. doi: 10.1016/j.jaerosci.2004.10.011
  19. Li L, Chen DR (2011) Aerosol charging using pen-type UV lamps. Aerosol Air Qual Res. doi: 10.4209/aaqr.2011.07.0103
  20. Liu BYH, Pui DYH (1974) A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. J Colloid Interface Sci. doi: 10.1016/0021-9797(74)90090-3
  21. Mäkelä JM, Jokinen V, Mattila T, Ukkonen A, Keskinen J (1996) Mobility distribution of acetone cluster ions. J Aerosol Sci. doi: 10.1016/0021-8502(95)00560-9
  22. Modesto-Lopez LB, Kettleson EM, Biswas P (2011) Soft X-ray charger (SXC) system for use with electrospray for mobility measurement of bioaerosols. J Electrostat. doi: 10.1016/j.elstat.2011.04.014
  23. Qi C, Chen DR, Pui DYH (2007) Experimental study of a new corona-based unipolar aerosol charger. J Aerosol Sci. doi: 10.1016/j.jaerosci.2007.05.005
  24. Rader DJ, McMurry PH, Smith S (1987) Evaporation rates of monodisperse organic aerosols in the 0.02- to 0.2-μm-diameter range. Aerosol Sci Technol. doi: 10.1080/02786828708959137
  25. Reischl GP, Mäkelä JM, Necid J (1997) Performance of Vienna type differential mobility analyzer at 1.2–20 nanometer. Aerosol Sci Technol. doi: 10.1080/02786829708965503
  26. Rohmann H (1923) Methode zur Messung der Größe von Schwebeteilchen. Z Physik A. doi: 10.1007/BF01328683
  27. Rosell-Llompart J, Loscertales IG, Bingham D, Fernández de la Mora J (1996) Sizing nanoparticles and ions with a short differential mobility analyzer. J Aerosol Sci. doi: 10.1016/0021-8502(96)00016-X
  28. Rosser S, Fernández de la Mora J (2005) Vienna-type DMA of high resolution and high flow rate. Aerosol Sci Technol. doi: 10.1080/02786820500444820
  29. Shimada M, Han B, Okuyama K, Otani Y (2002) Bipolar charging of aerosol nanoparticles by a soft X-ray photoionizer. J Chem Eng Jpn. doi: 10.1252/jcej.35.786
  30. Steiner G, Attoui M, Wimmer D, Reischl GP (2010) A medium flow, high-resolution Vienna DMA running in recirculating mode. Aerosol Sci Technol. doi: 10.1080/02786821003636763
  31. Ude S, Fernández de la Mora J (2005) Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J Aerosol Sci. doi: 10.1016/j.jaerosci.2005.02.009
  32. Wilkes JG, Freeman JP, Heinze TM, Lay Jr JO, Vestal ML (1995) AC corona-discharge aerosol-neutralization device adapted to liquid chromatography/particle beam/mass spectrometry. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.1290090207
  33. Winklmayr W, Reischl GP, Lindner AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J Aerosol Sci. doi: 10.1016/S0021-8502(05)80007-2
  34. Yun KM, Lee SY, Iskandar F, Okuyama K, Tajima N (2009) Effect of X-ray energy and ionization time on the charging performance and nanoparticle formation of a soft X-ray photoionization charger. Adv Powder Technol. doi: 10.1016/j.apt.2009.07.002
  35. Zamorani E, Ottobrini G (1978) Aerosol particle neutralization to Boltzmann’s equilibrium by a.c. corona discharge. J Aerosol Sci. doi: 10.1016/0021-8502(78)90061-7
  36. Zeleny J (1929) The distribution of mobilities of ions in moist air. Phys Rev. doi: 10.1103/PhysRev.34.310

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Peter Kallinger
    • 1
    Email author
  • Gerhard Steiner
    • 1
    • 2
    • 3
  • Wladyslaw W. Szymanski
    • 1
  1. 1.Faculty of Physics, Aerosol Physics and Environmental PhysicsUniversity of ViennaViennaAustria
  2. 2.Division of Atmospheric Sciences, Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Ion Molecule Reactions & Environmental Physics, Institute of Ion Physics and Applied PhysicsLeopold-Franzens UniversityInnsbruckAustria

Personalised recommendations