Skip to main content
Log in

Arsenic removal by magnetic nanocrystalline barium hexaferrite

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscale magnetite (Fe3O4) (<15 nm) is known to remove arsenic efficiently but is very difficult to separate or require high magnetic fields to separate out from the waste water after treatment. Anisotropic hexagonal ferrite (BaFe12O19, BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 ± 0.52 nm synthesized by thermolysis method at 320 °C do not show hexagonal phase, however, subsequent annealing at 750 °C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharyya SK, Chatraborty P, Lahiri S, Raymahashay BC, Guha S, Bhowmik A (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546

    Article  CAS  Google Scholar 

  • Bao N, Shen L, Wang Y, Padhan P, Gupta A (2007) A facile thermolysis route to monodisperse ferrite nanocrystals. J Am Chem Soc 129:12374–12375

    Article  CAS  Google Scholar 

  • Beker U, Cumbal L, Duranoglu D, Kucuk I, Sengupta AK (2010) Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal. Environ Geochem Health 32:291–296

    Article  CAS  Google Scholar 

  • Bhakat PB, Gupta AK, Ayoob S, Kundu S (2006) Investigations on arsenic(V) removal by modified calcined bauxite. Colloids Surf A 281:237–245

    Article  CAS  Google Scholar 

  • Biswas BK, Inoue J, Inoue K, Ghimire KN, Harada H, Ohto K, Kawakita H (2008) Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. J Hazard Mater 154:1066–1074

    Article  CAS  Google Scholar 

  • Borah D, Satokawa S, Kato S, Kojima T (2009) Sorption of As(V) from aqueous solution using acid modified carbon black. J Hazard Mater 162:1269–1277

    Article  CAS  Google Scholar 

  • Cumbal L, Greenleaf J, Leun D, SenGupta AK (2003) Polymer supported inorganic nanoparticles: characterization and environmental applications. React Funct Polym 54:167–180

    Article  CAS  Google Scholar 

  • Hessien MM, Rashad MM, El-Barawy K (2008) Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J Magn Magn Mater 320:336–343

    Article  CAS  Google Scholar 

  • Hyeon T, Chung Y, Park J, Lee SS, Kim Y-W, Park BH (2002) Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J Phys Chem B 106:6831–6833

    Article  CAS  Google Scholar 

  • Junliang L, Yanwei Z, Cuijing G, Wei Z, Xiaowei Y (2010) One-step synthesis of barium hexaferrite nano-powders via microwave-assisted sol–gel auto-combustion. J Eur Ceram Soc 30:993–997

    Article  Google Scholar 

  • Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709

    Article  CAS  Google Scholar 

  • Li Z, Beachner R, McManama Z, Hanlie H (2007) Sorption of arsenic by surfactant-modified zeolite and kaolinite. Microporous Mesoporous Mater 105:291–297

    Article  CAS  Google Scholar 

  • Lim S-F, Zheng Y-M, Paul Chen J (2009) Organic arsenic adsorption onto a magnetic sorbent. Langmuir 25(9):4973–4978

    Article  CAS  Google Scholar 

  • Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53

    Article  CAS  Google Scholar 

  • Patel HA, Bajaj HC, Jasra RV (2008) Synthesis of Pd and Rh metal nanoparticles in the interlayer space of organically modified montmorillonite. J Nanopart Res 10:625–632

    Article  CAS  Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As(V) and As(III) by nanocrystalline, Titanium dioxide. Water Res 39:2327–2337

    Article  CAS  Google Scholar 

  • Phu ND, Phong PC, Chau N, Luong NH, Hoang LH, Hai NH (2009) Arsenic removal from water by magnetic Fe1−xCoxFe2O4 and Fe1−yNiyFe2O4 nanoparticles. J Exp Nanosci 4(3):253–258

    Article  CAS  Google Scholar 

  • Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166:1050–1059

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13:2387–2397

    Article  CAS  Google Scholar 

  • Tang W, Li Q, Li C, Gao S, Shang JK (2011) Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed ‘‘cage’’ and their superior adsorption performance on arsenic(III). J Nanopart Res 13:2641–2651

    Article  CAS  Google Scholar 

  • Tucek J, Zboril R, Namai A, Ohkoshi S (2010) ε-Fe2O3: an advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem Mater 22:6483–6505

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64:2510–2521

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo JT, Suchecki C, Wang J, Ellsworth AZ, D’Couto H, Quevedo E, Prakash A, Gonzalez L, Nguyen C, Kelty C, Colvin VL (2010) Pollution magnet: nano-magnetite for arsenic removal from drinking water. Environ Geochem Health 32:327–334

    Article  CAS  Google Scholar 

  • Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Colvin VL, Tomson MB (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20(12):3255–3264

    Article  CAS  Google Scholar 

  • Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticles self-assembly. Nature 420:395–398

    Article  CAS  Google Scholar 

  • Zhao X, Wang J, Wub F, Wang T, Cai Y, Shi Y, Jiang G (2010) Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J Hazard Mater 173:102–109

    Article  CAS  Google Scholar 

  • Zhao X, Guo X, Yang Z, Liu H, Qian Q (2011) Phase-controlled preparation of iron (oxyhydr)oxide nanocrystallines for heavy metal removal. J Nanopart Res 13:2853–2864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by KAIST EEWS Initiative 2011–2013 for the development of enhanced water treatment technologies by nanoscale ferrites and their carbon assemblies. This work was also supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2012-C1AAA001-M1A2A2026588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cafer T. Yavuz.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H.A., Byun, J. & Yavuz, C.T. Arsenic removal by magnetic nanocrystalline barium hexaferrite. J Nanopart Res 14, 881 (2012). https://doi.org/10.1007/s11051-012-0881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0881-x

Keywords

Navigation