Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

Abstract

A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abubakar I, Irvine L, Aldus C, Wyatt G, Fordham R et al (2007) A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess 11(36):1–216

  2. Ansari MA, Khan HM, Khan AA, Malik A, Sultan A, Shahid M, Shujatullah F, Azam A (2011) Evaluation of antibacterial activity of silver nanoparticles against MSSA and MSRA on isolates from skin infections. Biol Med 3:141–146

  3. Archer G (1998) Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181

  4. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

  5. Baptista PV, Doria G, Conde J (2011a) Alloy metal nanoparticles for multicolor cancer diagnostics. In: Colloidal quantum dots/nanocrystals for biomedical applications VI, proceedings of SPIE, vol 7909. SPIE, San Francisco

  6. Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I, Eaton P, Pereira E, Franco R (2011b) Nanoparticles in molecular diagnostics. Prog Mol Biol Transl Sci 104:427–488

  7. Chambers H, Deleo F (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641

  8. Cho KH, Park JE, Osaka T et al (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

  9. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S et al (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094

  10. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075. doi:10.1155/2012/751075

  11. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18

  12. David M, Daum R (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687

  13. De Lencastre H, Wu SW, Pinho MG, Ludovice A, Filipe S et al (1999) Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 5:163–175

  14. de Sousa MA, de Lencastre H (2004) Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol Med Microbiol 40:101–111

  15. Doria G, Dias JT, Larguinho M, Pereira E, Franco R, Baptista P (2010a) AuAg-alloy-nanoprobes for specific nucleic acid detection. NSTI-Nanotechnol Proc 3:62–65 (ISBN 978-1-4398-3415-2)

  16. Doria G, Larguinho M, Dias J, Pereira E, Franco R et al (2010b) Gold–silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology 21:255101

  17. Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339:521–526

  18. Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152

  19. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

  20. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6:103–109

  21. Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf 297:63–70

  22. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against Gram-positive and Gram-negative bacteria. Nanomedicine NBM 8:37–45

  23. Jain J, Arora S, Rajwade J, Omray P, Khandelwal S et al (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

  24. Jin T, Yiping H (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res. doi:10.1007/s11051-011-0595-5

  25. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

  26. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141

  27. Liz-Marzan L (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

  28. Marambio-Jones C, Hoek E (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

  29. Neal AL (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371

  30. Nyachuba D (2010) Foodborne illness: is it on the rise? Nutr Rev 68:257–269

  31. Rastogi SK, Rutledge VJ, Gibson C, Newcombe DA, Branen JR, Branen AL (2011) Ag colloids and Ag clusters over EDAPTMS-coated silica nanoparticles: synthesis, characterization, and antibacterial activity against Escherichia coli. Nanomedicine 7:305–314

  32. Rodriguez-Arguelles M, Sieiro C, Cao R, Nasi L (2011) Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. J Colloid Interface Sci 364:80–84

  33. Sabella S, Brunetti V, Vecchio G, Galeone A, Maiorano G, Cingolani R, Pomba PP (2011) Toxicity of citrate-capped AuNPs: Na in vitro and in vivo assessment. J Nanopart Res. doi:10.1007/s11051-011-0590-x

  34. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

  35. Wilcoxon J (2009) Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B 113:2647–2656

Download references

Acknowledgments

We thank Fundação para a Ciência e Tecnologia (MCTES) for financial support: CIGMH, PTDC/CTM/NAN/109877/2009, PTDC/QUI–QUI/112597/2009 and Ciência 2007 Program. de Lencastre H is acknowledged for kindly providing S. aureus COL.

Author information

Correspondence to Margarida Moreira dos Santos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

dos Santos, M.M., Queiroz, M.J. & Baptista, P.V. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles. J Nanopart Res 14, 859 (2012). https://doi.org/10.1007/s11051-012-0859-8

Download citation

Keywords

  • Gold:silver-alloy nanoparticles
  • Antibiotic
  • Antimicrobial
  • Gram-negative bacteria
  • E. coli
  • S. aureus