Skip to main content
Log in

Tuning the electronic and optical properties of hydrogen-terminated Si nanocluster by uniaxial compression

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The structural, electronic, and optical properties of hydrogen-terminated Si nanocluster (Si66H64) with a diameter of 1.3 nm under uniaxial compression have been investigated by means of density functional theory calculations. The structural deformation of silicon nanoparticle under axial strain manifests as reduction of cluster symmetry, contraction of bond length, and broadening of bond angle distribution. Such strain-induced distortion modifies the highest occupied molecular orbital (HOMO) the lowest unoccupied molecular orbital (LUMO) eigenvalues, HOMO–LUMO gap, and isosurfaces of HOMO and LUMO wavefunctions, that is, the HOMO–LUMO gap diminishes as strain increases and isosurface of HOMO and LUMO wavefunctions redistributes along the strain orientation. Moreover, uniaxial compression has a strong influence on the optical absorption spectra of the Si66H64 cluster. With increasing strain, the onset of absorption spectra red shifts. Interestingly, the strain-tunable photoluminescence in Si nanoparticle (Si66H64) can cover a broad spectrum (i.e., from visible light to ultraviolet), implying an exciting possibility for optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beck TL (2000) Real-space mesh techniques in density-functional theory. Rev Mod Phys 72:1041

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  • Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843

    Article  CAS  Google Scholar 

  • Benedict LX, Puzder A, Williamson AJ, Grossman JC, Galli G, Klepeis JE, Raty JY, Pankratov O (2003) Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation. Phys Rev B 68:085310

    Article  Google Scholar 

  • Bowler DR et al (1998) Hydrogen diffusion on Si(001) studied with the local density approximation and tight binding. J Phys Condens Matter 10:3719

    Article  CAS  Google Scholar 

  • Buda F, Fasolino A (1999) Strained semiconductor clusters in sodalite. Phys Rev B 60:6131

    Article  CAS  Google Scholar 

  • Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308

    Article  CAS  Google Scholar 

  • Degoli E, Cantele G, Luppi E, Magri R, Ninno D, Bisi O, Ossicini S (2004) Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state. Phys Rev B 69:155411

    Article  Google Scholar 

  • Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  Google Scholar 

  • Elabsy AM, Degheidy AR, Abdelwahed HG, Elkenany EB (2010) Pressure response to electronic structures of bulk semiconductors at room temperature. Phys B 405:3709–3713

    Article  CAS  Google Scholar 

  • Feher F (1977) Molekulspektroskopische untersuchungen auf dem gebiet der silane und der heterocyclischen sulfane. Westdeutscher, Koln

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  • Furukawa S, Miyasato T (1988) Quantum size effects on the optical band gap of microcrystalline Si:H. Phys Rev B 38:5726

    Article  CAS  Google Scholar 

  • Garoufalis CS, Zdetsis AD, Grimme S (2001) High level Ab initio calculations of the optical gap of small silicon quantum dots. Phys Rev Lett 87:276402

    Article  CAS  Google Scholar 

  • Green M (2004) Semiconductor quantum dots as biological imaging agents. Angew Chem Int Ed 43:4129–4131

    Article  CAS  Google Scholar 

  • Hamers RJ, Wang Y (1996) Atomically-resolved studies of the chemistry and bonding at Silicon surfaces. Chem Rev 96:1261–1290

    Article  CAS  Google Scholar 

  • Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B Condens Matter 31:1770

    Article  CAS  Google Scholar 

  • Itoh U, Toyoshima Y, Onuki H, Washida N, Ibuki T (1986) Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and S3H8. J Chem Phys 85:4867–4872

    Article  CAS  Google Scholar 

  • Jiang X, Zhao J, Zhuang C, Wen B, Jiang X (2010) Mechanical and electronic properties of ultrathin nanodiamonds under uniaxial compressions. Diam Relat Mater 19:21–25

    Article  CAS  Google Scholar 

  • Jurbergs D, Rogojina E, Mangolini L, Kortshagen U (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett 88:233113–233116

    Article  Google Scholar 

  • Kang Z, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21:661–664

    Article  CAS  Google Scholar 

  • Kenton AC, Ribarsky MW (1981) Ab initio calculations on hydrogen-bounded silicon clusters. Phys Rev B 23:2897–2910

    Article  CAS  Google Scholar 

  • Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New Jersey

    Google Scholar 

  • Lehtonen O, Sundholm D (2005) Density-functional studies of excited states of silicon nanoclusters. Phys Rev B 72:085424

    Article  Google Scholar 

  • Lehtonen O, Sundholm D (2006a) Coupled-cluster studies of the electronic excitation spectra of silanes. J Chem Phys 125:144314–144319

    Article  Google Scholar 

  • Lehtonen O, Sundholm D (2006b) Optical properties of sila-adamantane nanoclusters from density-functional theory. Phys Rev B 74:045433

    Article  Google Scholar 

  • Li YH, Gong XG, Wei SH (2006) Ab initio all-electron calculation of absolute volume deformation potentials of IV–IV, III–V, and II–VI semiconductors: the chemical trends. Phys Rev B 73:245206

    Article  Google Scholar 

  • Mavros MG, Micha DA, Kilin DS (2011) Optical properties of doped silicon quantum dots with crystalline and amorphous structures. J Phys Chem C 115:19529–19537

    Article  CAS  Google Scholar 

  • Nayfeh M, Akcakir O, Therrien J, Yamani Z, Barry N, Yu W, Gratton E (1999) Highly nonlinear photoluminescence threshold in porous silicon. Appl Phys Lett 75:4112–4114

    Article  CAS  Google Scholar 

  • Nayfeh MH, Barry N, Therrien J, Akcakir O, Gratton E, Belomoin G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl Phys Lett 78:1131–1133

    Article  CAS  Google Scholar 

  • Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601

    Article  CAS  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  CAS  Google Scholar 

  • Peng XH, Ganti S, Alizadeh A, Sharma P, Kumar SK, Nayak SK (2006) Strain-engineered photoluminescence of silicon nanoclusters. Phys Rev B 74:035339

    Article  Google Scholar 

  • Peng XH et al (2007) First-principles investigation of strain effects on the energy gaps in silicon nanoclusters. J Phys Condens Matter 19:266212

    Article  Google Scholar 

  • Puzder A, Williamson AJ, Grossman JC, Galli G (2003) Computational studies of the optical emission of silicon nanocrystals. J Am Chem Soc 125:2786–2791

    Article  CAS  Google Scholar 

  • Rosenberg A, Ozier I (1976) Collision-induced absorption of gaseous silane in the far infrared. J Chem Phys 65:418–424

    Article  CAS  Google Scholar 

  • Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, Tilley RD (2011) Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 3:3364–3370

    Article  CAS  Google Scholar 

  • Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63

    Article  CAS  Google Scholar 

  • Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578

    Article  CAS  Google Scholar 

  • Thean A, Leburton JP (2001) Strain effect in large silicon nanocrystal quantum dots. Appl Phys Lett 79:1030–1032

    Article  CAS  Google Scholar 

  • Vasiliev I, Chelikowsky JR, Martin RM (2002) Surface oxidation effects on the optical properties of silicon nanocrystals. Phys Rev B 65:121302

    Article  Google Scholar 

  • Wang X, Zhang RQ, Niehaus TA, Frauenheim T, Lee ST (2007) Hydrogenated silicon nanoparticles relaxed in excited states. J Phys Chem C 111:12588–12593

    Article  CAS  Google Scholar 

  • Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554

    Article  CAS  Google Scholar 

  • Wilcoxon JP, Samara GA, Provencio PN (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60:2704

    Article  CAS  Google Scholar 

  • Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002) Quantum monte carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Phys Rev Lett 89:196803

    Article  Google Scholar 

  • Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262:1242–1244

    Article  CAS  Google Scholar 

  • Zdetsis AD (2006) Optical and electronic properties of small size semiconductor nanocrystals and nanoclusters. Rev Adv Mater Sci 11:56–78

    CAS  Google Scholar 

  • Zhang DB, Dumitrica T (2009) Modulating the optical and electronic properties of highly symmetric Si quantum dots. Nanotechnology 20:445401

    Article  Google Scholar 

  • Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of China (No. DUT10ZD211) and National Natural Science Foundation of China (11134005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Zhao, J. & Jiang, X. Tuning the electronic and optical properties of hydrogen-terminated Si nanocluster by uniaxial compression. J Nanopart Res 14, 818 (2012). https://doi.org/10.1007/s11051-012-0818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0818-4

Keywords

Navigation