Skip to main content
Log in

Sonochemically synthesized rare earth double-doped zirconia nanoparticles: probable candidate for white light emission

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study explores the viability of rare earth-doped zirconia nanophosphors as probable candidates for white light emission. Undoped ZrO2 and single- and double-doped ZrO2:M (where M = Tb3+ and Eu3+) nanophosphors have been synthesized using a simple sonochemical process. The products were characterized using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence spectrophotometry. The SEM micrographs show that resultant nanoparticles have dendritic shape. TEM and HRTEM studies showed that the size of the majority of the nanoparticles were around 28 ± 5 nm. Characteristic blue and green emission from Tb3+ ions and red from Eu3+ dopant ions were observed. The CIE coordinates of the double-doped ZrO2:Tb3+ (1.2 %):Eu3+ (0.8 %) nanophosphor lie in the white light region of the chromaticity diagram and show promise as good phosphor materials for new lighting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agger JR, Anderson MW, Pemble ME, Terasaki O, Nozue Y (1998) Growth of quantum-confined indium phosphide inside MCM-41. J Phys Chem B 102:3345–3353

    Article  CAS  Google Scholar 

  • Assefa Z, Haire RG, Raison PE (2004) Photoluminescence and Raman studies of Sm3+ and Nd3+ ions in zirconia matrices: example of energy transfer and host–guest interactions. Spectrochim Acta A 60(1–2):89–95

    Google Scholar 

  • Bhargava RN, Gallaghar D, Hong X, Nurmikko A (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72:416–419

    Article  CAS  Google Scholar 

  • Blasse G (1966) On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+ activated oxides. J Chem Phys 45(7):2356–2360

    Article  CAS  Google Scholar 

  • Bohe AE, Gamboa JA, Pasquevich JM, Tolley AJ, Pelegrina JL (2000) Microstructural characterization of ZrO2 particles prepared by reaction of gaseous ZrCl4 with Fe2O3. J Am Ceram Soc 83:755–760. doi:10.1111/j.1151-2916.2000.tb01270.x

    Article  CAS  Google Scholar 

  • Cao J, Qiu X, Luo B, Liang Y, Zhang Y, Tan R, Zhao M, Zhu Q (2004) Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv Funct Mater 14(3):243–246

    Article  CAS  Google Scholar 

  • Chen L, Liu Y, Li Y (2004) Preparation and characterization of ZrO2:Eu3+ phosphors. J Alloys Compd 381(1–2):266

    Article  CAS  Google Scholar 

  • De la Rosa E, Diaz-Torres LA, Salas P, Rodrıguez RA (2005) Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Opt Mater 27(7):1320–1325

    Article  Google Scholar 

  • De la Rosa-Cruz E, Diaz-Torres LA, Salas P, Rodrıguez RA, Kumar GA, Meneses MA, Mosino JF, Hernandez JM, Barbosa-Garcia O (2003) Luminescent properties and energy transfer in ZrO2:Sm3+ nanocrystals. J Appl Phys 94(5):3509

    Article  Google Scholar 

  • Diaz-Torres LA, De la Rosa E, Salas P, Romero VH, Angeles-Chavez C (2008) Efficient photoluminescence of Dy3+ at low concentrations in nanocrystalline ZrO2. J Solid State Chem 181(1):75–80

    Article  CAS  Google Scholar 

  • Fouassier C (1997) Luminescent materials. Curr Opin Solid State Mater Sci 2(2):231–235

    Article  CAS  Google Scholar 

  • Fujishiro F, Mochizuki S (2009) Reversible photo-induced spectral change and defect creation in ZrO2. Phys Stat Sol C 6(1):354–357

    Article  CAS  Google Scholar 

  • Garvie RC, Goss MF (1986) Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals. J Mater Sci 21(4):1253–1257

    Article  CAS  Google Scholar 

  • Ghosh R, Patra A (2006) Role of surface coating in ZrO2/Eu3+ nanocrystals. Langmuir 22(14):6321–6327

    Article  CAS  Google Scholar 

  • Ghosh R, Priolkar KR, Patra A (2007) Understanding the local structures of Eu and Zr in Eu2O3 doped and coated ZrO2 nanocrystals by EXAFS study. J Phys Chem C 111(2):571–578

    Article  CAS  Google Scholar 

  • Gu F, Wang SF, Lu MK, Zhou GJ, Liu SW, Xu D, Yuan DR (2003) Effect of Dy3+ doping and calcination on the luminescence of ZrO2 nanoparticles. Chem Phys Lett 380(1–2):185–189

    Article  CAS  Google Scholar 

  • Hoefdraad HE (1975) The charge-transfer absorption band of Eu3+ in oxides. J Solid State Chem 15(2):175–177

    Article  CAS  Google Scholar 

  • Hunt RWG (1991) Measuring colors. Applied science & industrial technology series, vol 60. Ellis Horwood, New York

    Google Scholar 

  • Kemler J (1969) Luminescent screens: photometry and colorimetry. Iliffe, London

    Google Scholar 

  • Kumari L, Li WZ, Xu JM, Leblanc RM, Wang DZ, Li Y, Guo H, Zhang J (2009) Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst Growth Des 9(9):3874–3880

    Article  CAS  Google Scholar 

  • Lai L-J, Lu H-C, Chen H-K, Cheng B-M, Lin M-I, Chu T-C (2005) Photoluminescence of zirconia films with VUV excitation. J Electron Spectrosc Relat Phenom 144–147:865

    Article  Google Scholar 

  • Liang J, Deng Z, Jiang X, Li F, Li Y (2002) Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg Chem 41(14):3602–3604

    Article  CAS  Google Scholar 

  • Mondal A, Ram S (2004) Monolithic t-ZrO2 nanopowder through a ZrO(OH)2·xH2O polymer precursor. J Am Ceram Soc 87(12):2187–2194

    Article  CAS  Google Scholar 

  • Mondal A, Ram S (2008) Enhanced phase stability and photoluminescence of Eu3+ modified t-ZrO2 nanoparticles. J Am Ceram Soc 91(1):329–332

    Article  CAS  Google Scholar 

  • Moona BK, Kwona M, Jeonga JH, Kimb C-S, Yic S-S, Kimd PS, Choid H, Kim JH (2007) Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles. J Lumin 122–123:855–857

    Article  Google Scholar 

  • Navio JA, Hidalgo MC, Colon G, Bottta SG, Litter MI (2001) Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol−gel technique. Langmuir 17(1):202–210

    Article  CAS  Google Scholar 

  • Nelson JA, Brant EL, Wagner MJ (2003) Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction. Chem Mater 15(3):688–693

    Article  CAS  Google Scholar 

  • Patra A, Friend CS, Kapoor R, Prasad PN (2003) Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals. Appl Phys Lett 83:284–286. doi:10.1063/1.1592891

    Article  CAS  Google Scholar 

  • Purohit RD, Saha S, Tyagi AK (2006) Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies. Mater Sci Eng B 130(1–3):57–60

    Article  CAS  Google Scholar 

  • Reisfeld R, Saraidarov T, Pietraszkiewicz M, Lis S (2001) Luminescence of europium(III) compounds in zirconia xerogels. Chem Phys Lett 349(3–4):266–270

    Article  CAS  Google Scholar 

  • Romero VH, De la Rosa E, López-Luke T, Salas P, Angeles-Chavez C (2010) Brilliant blue, green and orange–red emission band on Tm3+-, Tb3+- and Eu3+-doped ZrO2 nanocrystals. J Phys D 43(46):465105

    Article  Google Scholar 

  • Salas P, Angeles C, Montoya JA, De la Rosa E, Dıaz-Torres LA, Martınez A, Romero-Romo MA, Morales J (2005) Synthesis, characterization and luminescence properties of ZrO2:Yb3+–Er3+ nanophosphor. Opt Mater 27(7):1295–1300

    Article  CAS  Google Scholar 

  • Shukla S, Seal S (2004) Thermodynamic tetragonal phase stability in sol−gel derived nanodomains of pure zirconia. J Phys Chem B 108(11):3395–3399

    Article  CAS  Google Scholar 

  • Somiya S, Akiva J (1999) Hydrothermal zirconia powders: a bibliography. J Eur Ceram Soc 19(1):81–87

    Article  CAS  Google Scholar 

  • Speghini A, Bettinelli M, Riello P, Bucella S, Benedetti A (2005) Preparation, structural characterization, and luminescence properties of Eu3+-doped nanocrystalline ZrO2. J Mater Res 20(10):2780–2791

    Article  CAS  Google Scholar 

  • Sundar Manoharan S, Rao M (2004) Sonochemical synthesis of nano materials. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Los Angeles, pp 67–82

    Google Scholar 

  • Suslick KS (1990) Sonochemistry. Science 247:1439

    Article  CAS  Google Scholar 

  • Trave A, Buda F, Fasolino A (1996) Band-gap engineering by III–V infill in sodalite. Phys Rev Lett 77:5405–5408

    Article  CAS  Google Scholar 

  • Wang YQ, Yin LX, Palhcik O, Hacohen YR, Koltypin Y, Gedanken A (2001) Sonochemical synthesis of layered and hexagonal yttrium−zirconium oxides. Chem Mater 13(4):1248–1251

    Article  CAS  Google Scholar 

  • Yashima M, Ohtake K, Kakihana M, Arashi H, Yoshimura M (1996) Determination of the tetragonal cubic phase boundary of Zr1−x R x O2−x/2 (R = Nd, Sm, Y, Er, Yb) by Raman scattering. J Phys Chem Solids 57:17–24

    Article  Google Scholar 

  • Zhang H, Fu X, Niu S, Xin Q (2008) Blue emission of ZrO2:Tm nanocrystals with different crystal structure under UV excitation. J Non-Cryst Solids 354(14):1559–1563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimple P. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Dutta, D.P., Manoj, N. et al. Sonochemically synthesized rare earth double-doped zirconia nanoparticles: probable candidate for white light emission. J Nanopart Res 14, 814 (2012). https://doi.org/10.1007/s11051-012-0814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0814-8

Keywords

Navigation