Skip to main content
Log in

Optical delivery of nanospheres using arbitrary bending nanofibers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work reports an optical delivery of about 700-nm diameter polystyrene spheres along arbitrary bending nanofibers (600 nm in diameter) including complete loop structure. Dependence of bending loss on bending radii and central angles of the nanofiber has also been investigated. The results show that, for a specific input optical power, there is a corresponding minimum bending radius for optical trapping and delivery. In other words, for a specific input optical power, when the bending radius of the nanofiber is larger than the minimum bending radius, the 700-nm diameter nanospheres can be trapped and delivered along the bending nanofiber. Vice versa, the nanospheres will be escaped from the bending nanofiber during the delivery process because of relatively large bending loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  CAS  Google Scholar 

  • Block SM, Goldstein LSB, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  CAS  Google Scholar 

  • Brambilla G, Murugan GS, Wilkinson JS, Richardson DJ (2007) Optical manipulation of microspheres along a subwavelength optical wire. Opt Lett 32:3041–3043

    Article  CAS  Google Scholar 

  • Cai H, Poon AW (2010) Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices. Opt Lett 35:2855–2857

    Article  CAS  Google Scholar 

  • Gaugiran S, Gétin S, Fedeli JM, Colas G, Fuchs A, Chatelain F, Dérouard J (2005) Optical manipulation of microparticles and cells on silicon nitride waveguides. Opt Express 13:6956–6963

    Article  CAS  Google Scholar 

  • Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816

    Article  CAS  Google Scholar 

  • Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photon 2:365–370

    Article  CAS  Google Scholar 

  • Lin SY, Schonbrun E, Crozier K (2010) Optical manipulation with planar silicon microring resonators. Nano Lett 10:2408–2411

    Article  CAS  Google Scholar 

  • MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424

    Article  CAS  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  • Ozkan M, Wang M, Ozkan C, Flynn R, Birkbeck A, Esener S (2003) Optical manipulation of objects and biological cells in microfluidic devices. Biomed Microdevices 5:61–67

    Article  Google Scholar 

  • Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206

    Article  CAS  Google Scholar 

  • Tanaka T, Yamamoto S (2000) Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode, channeled waveguide. Appl Phys Lett 77:3131–3133

    Article  CAS  Google Scholar 

  • Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2004) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87

    Article  Google Scholar 

  • Xin HB, Li BJ (2011) Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Opt Express 19:13285–13290

    Article  CAS  Google Scholar 

  • Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2009) Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457:71–75

    Article  CAS  Google Scholar 

  • Yu T, Cheong FC, Sow CH (2004) The manipulation and assembly of CuO nanorods with line optical tweezers. Nanotechnology 15:1732–1736

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 60625404 and 10974261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xu, L. & Li, B. Optical delivery of nanospheres using arbitrary bending nanofibers. J Nanopart Res 14, 799 (2012). https://doi.org/10.1007/s11051-012-0799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0799-3

Keywords

Navigation