Skip to main content
Log in

Rapid synthesis of triangular CdS nanocrystals without any trap emission

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocrystals (NCs) with anisotropic dimensions display polarized emission compared to nano dots. Triangular prisms are good candidates for polarized optical properties and monodisperse triangular NCs are ideal for developing building blocks for novel three-dimensional superlattices due to its anisotropic dimension. Among triangular nanocrystals, CdS nanocrystals are less discussed for the past one decade of research due to the difficulty in its processing method. Though well studied very few methods for developing CdS triangular nanocrystals have been reported, and most are having drawbacks either due to the time consuming process or the products are combination of triangular as well as many other shaped NC or with trap emissions due to defects which are comparable to band emissions limits its applications in full scale. Here, we are presenting a novel method to develop 7 nm CdS triangular NCs that can solve the above mentioned problems, which would augment the usage of CdS triangular crystals for many applications, based on its anisotropic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  • Cao CY, Wang J (2004) One-pot synthesis of high-quality zinc-blende cds nanocrystals. J Am Chem Soc 126:14336–14337

    Article  CAS  Google Scholar 

  • Carbone L, Kudera S, Carlino E, Parak WJ, Giannini C, Cingolani R, Manna L (2006) Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J Am Chem Soc 128:748–755

    Article  CAS  Google Scholar 

  • Carbone L, Nobile C, De GM, Della SF, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini IR (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 7:2942–2950

    Article  CAS  Google Scholar 

  • Chen XY, Wang X, Wang ZH, Yang XG, Qian YT (2005) Hierarchical growth and shape evolution of HgS dendrites. Cryst Growth Des 5:347–350

    Article  CAS  Google Scholar 

  • Chen W, Chen K, Peng Q, Li Y (2009) Triangular CdS nanocrystals: rational solvothermal synthesis and optical studies. Small 5:681–684

    Article  CAS  Google Scholar 

  • Cheng Y, Wang Y, Bao F, Chen D (2006) Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. J Phys Chem B 110:9448–9451

    Article  CAS  Google Scholar 

  • Choi SH, Kim EG, Park J, An K, Lee N, Kim SC, Hyeon T (2005) Large-scale synthesis of hexagonal pyramid-shaped ZnO nanocrystals from thermolysis of Zn–oleate complex. J Phys Chem B 109:14792–14794

    Article  CAS  Google Scholar 

  • Coe S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803

    Article  CAS  Google Scholar 

  • Diaz JG, Planelles J (2004) Theoretical characterization of triangular CdS nanocrystals: a tight-binding approach. Langmuir 20:11278–11284

    Article  CAS  Google Scholar 

  • Dorfs D, Salant A, Popov I, Banin U (2008) ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. Small 4:1319–1323

    Article  CAS  Google Scholar 

  • Eisler HJ, Sundar VC, Bawendi MG, Walsh M, Smith HI, Klimov V (2002) Color-selective semiconductor nanocrystal laser. Appl Phys Lett 80:4614–4616

    Article  CAS  Google Scholar 

  • Ekimov AI, Hache F, Schanne-Klein MC, Ricard D, Flytzanis C, Kudryavtsev IA, Yazeva TV, Rodina AV, Efros Al L (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J Opt Soc Am B Opt Phys 10:100–107

    Article  CAS  Google Scholar 

  • Ghezelbash A, Sigman MB, Korgel BA (2004) Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett 4:537–542

    Article  CAS  Google Scholar 

  • Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  CAS  Google Scholar 

  • Hewa KNN, Kirsanova M, Nemchinov A, Schmall N, El-Khoury PZ, Tarnovsky AN, Zamkov M (2009) Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. J Am Chem Soc 131:1328–1334

    Article  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    CAS  Google Scholar 

  • Kan S, Aharoni A, Mokari T, Banin U (2004) Shape control of III-V semiconductor nanocrystals: synthesis and properties of InAs quantum rods. Faraday Discuss 125:23–38

    Article  CAS  Google Scholar 

  • Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang PD (2004) Nanoribbon waveguides for sub wavelength photonics integration. Science 305:1269–1273

    Article  CAS  Google Scholar 

  • Li Y, Li X, Yang C, Li Y (2003) Controlled synthesis of CdS nanorods and hexagonal nanocrystals. J Mater Chem 13:2641–2648

    Article  CAS  Google Scholar 

  • Lim WP, Wong CT, Ang SL, Low HY, Chin WS (2006) Phase-selective synthesis of copper sulfide nanocrystals. Chem Mater 18:6170–6177

    Article  CAS  Google Scholar 

  • Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125:4430–4431

    Article  CAS  Google Scholar 

  • Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122:12700–12706

    Article  CAS  Google Scholar 

  • Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2:382–385

    Article  CAS  Google Scholar 

  • Manna L, Wang L, Cingolani R, Alivisatos AP (2005) First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. J Phys Chem B 109:6183–6192

    Article  CAS  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  CAS  Google Scholar 

  • Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  CAS  Google Scholar 

  • Pinna N, Weiss K, Sack-Kongehl H, Vogel W, Urban J, Pileni MP (2001a) Triangular CdS nanocrystals: synthesis, characterization, and stability. Langmuir 17:7982–7987

    Article  CAS  Google Scholar 

  • Pinna N, Weiss K, Urban J, Pileni MP (2001b) Triangular CdS nanocrystals: structural and optical studies. Adv Mater 13:261–264

    Article  CAS  Google Scholar 

  • Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) Size effects in the excited electronic states of small colloidal CdS crystallites. J Chem Phys 80:4464–4469

    Article  CAS  Google Scholar 

  • Ryan KM, Mastroianni A, Stancil KA, Liu HT, Alivisatos AP (2006) Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett 6:1479–1482

    Article  CAS  Google Scholar 

  • Scher EC, Manna L, Alivisatos AP (2003) Shape control and applications of nanocrystals. Philos Trans R Soc Lond Ser A 361:241–255

    Article  CAS  Google Scholar 

  • Skrabalak SE, Xia Y (2009) Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano 3:10–15

    Article  CAS  Google Scholar 

  • Tessler N, Medvedev V, Kazes M, Kan SH, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295:1506–1508

    Article  Google Scholar 

  • Warner JH, Tilley RD (2005) Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals. Adv Mater 17:2997–3001

    Article  CAS  Google Scholar 

  • Wolcott A, Fitzmorris RC, Muzaffery O, Zhang JZ (2010) CdSe quantum rod formation aided by in situ TOPO oxidation. Chem Mater 22:2814–2821

    Article  CAS  Google Scholar 

  • Yang Q, Sha J, Wang L, Wang Y, Ma X, Wang J, Yang D (2004) Synthesis of MgO nanotube bundles. Nanotechnology 15:1004–1008

    Article  CAS  Google Scholar 

  • Yu WW, Peng X (2002) Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41:2368–2371

    Article  CAS  Google Scholar 

  • Yu H, Li J, Loomis RA, Wang LW, Buhro WE (2003) Two-versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat Mater 2:517–520

    Article  CAS  Google Scholar 

  • Zaban A, Mićić OI, Gregg BA, Nozik AJ (1998) Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14:3153–3156

    Article  CAS  Google Scholar 

  • Zhang LJ, Shen CX, Liang H, Guo S, Liang ZH (2010) Hot-injection synthesis of highly luminescent and monodisperse CdS nanocrystals using thioacetamide and cadmium source with proper reactivity. J Colloid Interface Sci 342:236–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Aby Cheruvathoor Poulose and Srivani Veeranarayanan thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for the financial support, Monbukagakusho fellowship. Authors thank Prof. Katsumata for XRD and Prof. Fukushima for Photoluminescence measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulose, A.C., Veeranarayanan, S., Yoshida, Y. et al. Rapid synthesis of triangular CdS nanocrystals without any trap emission. J Nanopart Res 14, 789 (2012). https://doi.org/10.1007/s11051-012-0789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0789-5

Keywords

Navigation