Skip to main content
Log in

Synthesis and photophysical properties of polyamides containing in-chain porphyrin and [60]fullerene

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Conjugated polyamides containing porphyrin and [60]fullerene (C60) in the main chain were prepared by a direct polycondensation of the 3′H,3″H-dicyclopropa[1, 9:16, 17] [5, 6]fullerene-C60-I h -3′,3″-dicarboxylic acid and 5,15-bis(4-aminophenyl)-10,20-bis(3,5-dialkoxyphenyl)porphyrin in the presence of triphenyl phosphite and pyridine. Gel permeation chromatography (GPC) analysis of the polyamides showed the weight-average molecular weight was about 23,626–23,736, and the temperature at 5% weight loss determined by thermogravimetric analysis (TGA) was above 216 °C. The transmission electron microscopy (TEM) images displayed the regular one-dimensional linear arrays of the polyamides with lengths exceeded 200 nm. The photoinduced electron transfer from porphyrin to C60 in the polyamides was observed in nanosecond laser-flash photolysis experiments at ambient temperature, which produced a charge-separated state (porphyrin radical cation–C60 radical anion pair) with a lifetime as long as 40 μs. The calculated ratio of k CS/k CR was found to be 2.1 × 104. They could have potential applications for photoelectronic devices, organic solar cells and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armarego WLE, Chai CLL (2003) Purification of laboratory chemicals, 5th edn. Butterworth-Heinemann, USA

    Google Scholar 

  • Armaroli N, Accorsi G, Song F, Palkar A, Echegoyen L, Bonifazi D, Diederich F (2005) Photophysical and electrochemical properties of meso, meso-linked oligoporphyrin rods with appended fullerene terminals. ChemPhysChem 6:732–743

    Article  CAS  Google Scholar 

  • Balzani V (2001) Electron transfer in chemistry, vol 2. Wiley, Weinheim, p 270

    Book  Google Scholar 

  • Charvet R, Ariga K, Hill JP, Ji Q, Khan AH, Acharya S (2011) Large scale assembly of ordered donor-acceptor heterojunction molecular wires using the Langmuir–Blodgett technique. Chem Commun 47:6825–6827

    Article  CAS  Google Scholar 

  • Colthup NB, Daly LH, Wiberley SE (1964) Introduction to infrared and raman spectroscopy. Academic Press, New York, p 239

    Google Scholar 

  • D’Souza F, Smith PM, Gadde S, McCarty AL, Kullman MJ, Zandler ME, Itou M, Araki Y, Ito O (2004) Supramolecular triads formed by axial coordination of fullerene to covalently linked zinc porphyrin–ferrocene(s): design, syntheses, electrochemistry, and photochemistry. J Phys Chem B 108:11333–11343

    Article  Google Scholar 

  • Elisa M, Silva SR, Dutra ER, Mano V, Machado JC (2000) Preparation and thermal study of polymers derived from acrylamide. Polym Dedgrad Stab 67:491–495

    Article  Google Scholar 

  • El-Khouly ME, Ju DK, Kay KY, D’Souza F, Fukuzumi S (2010) Supramolecular tetrad of subphthalocyanine–triphenylamine–zinc porphyrin coordinated to fullerene as an “antenna-reaction-center” mimic: formation of a long-lived charge-separated state in nonpolar solvent. Chem Eur J 16:6193–6202

    Article  CAS  Google Scholar 

  • Fukuzumi S, Kojima T (2008) Photofunctional nanomaterials composed of multiporphyrins and carbon-based p-electron acceptors. J Mater Chem 18:1427–1439

    Article  CAS  Google Scholar 

  • Fungo F, Otero L, Borsarelli CD, Durantini EN, Silber JJ, Sereno L (2002) Photocurrent generation in thin SnO2 nanocrystalline semiconductor film electrodes from photoinduced charge-separation state in porphyrin–C60 dyad. J Phys Chem B 106:4070–4078

    Article  CAS  Google Scholar 

  • Fungo F, Milanesio ME, Durantini EN, Otero L, Dittrich T (2007) Optically induced switch of the surface work function in TiO2/porphyrin–C60 dyad system. J Mater Chem 17:2107–2112

    Article  CAS  Google Scholar 

  • Gervaldo M, Liddell PA, Kodis G, Brennan BJ, Johnson CR, Bridgewater JW, Moore JW, Moore TA, Gust D (2010) A photo- and electrochemically-active porphyrin–fullerene dyad electropolymer. Photochem Photobiol Sci 9:890–900

    Article  CAS  Google Scholar 

  • Guldi DM (2002) Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 31:22–36

    Article  CAS  Google Scholar 

  • Guldi DM, Imahori H, Tamaki K, Kashiwagi Y, Yamada H, Sakata Y, Fukuzumi S (2004) A molecular tetrad allowing efficient energy storage for 1.6 s at 163 K. J Phys Chem A 108:541–548

    Article  CAS  Google Scholar 

  • Hasobe T, Kamat PV, Absalom MA, Kashiwagi Y, Sly J, Crossley MJ, Hosomizu K, Imahori H, Fukuzumi S (2004) Supramolecular photovoltaic cells based on composite molecular nanoclusters: dendritic porphyrin and C60, porphyrin dimer and C60, and porphyrin–C60 dyad. J Phys Chem B 108:12865–12872

    Article  CAS  Google Scholar 

  • Hasobe T, Imahori H, Kamat PV, Ahn TK, Kim SK, Kim D, Fujimoto A, Hirakawa T, Fukuzumi S (2005) Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J Am Chem Soc 127:1216–1228

    Article  CAS  Google Scholar 

  • Hasobe T, Saito K, Kamat PV, Troiani V, Qiu H, Solladie N, Kim KS, Park JK, Kim D, D’Souza F, Fukuzumi S (2007) Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. J Mater Chem 17:4160–4170

    Article  CAS  Google Scholar 

  • Imahori H (2007) Creation of fullerene-based artificial photosynthetic systems. Bull Chem Soc Jpn 80:621–636

    Article  CAS  Google Scholar 

  • Imahori H, Hagiwara K, Aoki M, Akiyama T, Taniguchi S, Okada T, Shirakawa M, Sakata Y (1996) Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin–C60 dyads. J Am Chem Soc 118:11771–11782

    Article  CAS  Google Scholar 

  • Imahori H, Yamada H, Nishimura Y, Yamazaki I, Sakata Y (2000) Vectorial multistep electron transfer at the gold electrodes modified with self-assembled monolayers of ferrocene–porphyrin–fullerene triads. J Phys Chem B 104:2099–2108

    Article  CAS  Google Scholar 

  • Imahori H, Sekiguchi Y, Kashiwagi Y, Sato T, Araki Y, Ito O, Yamada H, Fukuzumi S (2004) Long-lived charge-separated state generated in a ferrocene-meso, meso-linked porphyrin trimer–fullerene pentad with a high quantum yield. Chem Eur J 10:3184–3196

    Article  CAS  Google Scholar 

  • Kuciauskas D, Lin S, Seely GR, Moore AL, Moore TA, Gust D, Drovetskaya T, Reed CA, Boyd PDW (1996) Energy and photoinduced electron transfer in porphyrin-fullerene dyads. J Phys Chem 100:15926–15932

    Article  CAS  Google Scholar 

  • Liu Y, Liang P, Chen Y, Zhang YM, Zheng JY, Yue H (2005) Interlocked bis(polyrotaxane) of cyclodextrin–porphyrin systems mediated by fullerenes. Macromolecules 38:9095–9099

    Article  CAS  Google Scholar 

  • Liu JY, El-Khouly ME, Fukuzumi S, Ng DKP (2011) Mimicking photosynthetic antenna-reaction-center complexes with (boron dipyrromethene)3–porphyrin–C60 pentad. Chem Eur J 17:1605–1613

    Article  CAS  Google Scholar 

  • Lu FS, Xiao SQ, Li YL, Liu HB, Li HM, Zhuang JP, Liu Y, Wang N, He XR, Li XF, Gan LB, Zhu DB (2004) Synthesis and chemical properties of conjugated polyacetylenes having pendant fullerene and/or porphyrin units. Macromolecules 37:7444–7450

    Article  CAS  Google Scholar 

  • Luo C, Guldi DM, Imahori H, Tamaki K, Sakata Y (2000) Sequential energy and electron transfer in an artificial reaction center: formation of a long-lived charge-separated state. J Am Chem Soc 122:6535–6551

    Article  CAS  Google Scholar 

  • Poddutoori PK, Sandanayaka ASD, Zarrabi N, Hasobe T, Ito O, van der Est A (2011) Sequential charge separation in two axially linked phenothiazine–aluminum(III) porphyrin–fullerene triads. J Phys Chem A 115:709–717

    Article  CAS  Google Scholar 

  • Schuster DI, Li K, Palkar A, Echegoyen L, Stanisky C, Cross RJ, Niemi M, Tkachenko NV, Lemmetyinen H (2007) Azobenzene-linked porphyrin–fullerene dyads. J Am Chem Soc 129:15973–15982

    Article  CAS  Google Scholar 

  • Sessler JL, Jayawickramarajah J, Gouloumis A, Torres T, Guldi DM, Maldonado S, Stevenson K (2005) Synthesis and photophysics of a porphyrin–fullerene dyad assembled through Watson–Crick hydrogen bonding. Chem Commun 14:1892–1894

    Article  Google Scholar 

  • Smith KM, Guilard R, Kadish KM (eds) (1999) The Porphyrin handbook. Academic Press, New York

    Google Scholar 

  • Straight SD, Andréasson J, Kodis G, Moore AL, Moore TA, Gust D (2005) Photochromic control of photoinduced electron transfer. Molecular double-throw switch. J Am Chem Soc 127:2717–2724

    Article  CAS  Google Scholar 

  • Wang N, Lu FS, Huang CS, Li YL, Yuan MJ, Liu XF, Liu HB, Gan LB, Jiang L, Zhu DB (2006) Construction of diads and triads copolymer systems containing perylene, porphyrin, and/or fullerene blocks. J Polym Sci Part A: Polym Chem 44:5863–5874

    Article  CAS  Google Scholar 

  • Winters MU, Dahlstedt E, Blades HE, Wilson CJ, Frampton MJ, Anderson HL, Albinsson B (2007) Probing the efficiency of electron transfer through porphyrin-based molecular wires. J Am Chem Soc 129:4291–4297

    Article  CAS  Google Scholar 

  • Wu ZQ, Shao XB, Li C, Hou JL, Wang K, Jiang XK, Li ZT (2005) Hydrogen-bonding-driven pre-organized zinc porphyrin receptors for efficient complexation of C60, C70, and C60 derivatives. J Am Chem Soc 127:17460–17468

    Article  CAS  Google Scholar 

  • Xiao LX, Shimotani H, Ozawa M, Li J, Dragoe N, Saigo K, Kitazawa K (1999) Synthesis of a novel [60]fullerene pearl-necklace polymer, poly(4,4′-carbonylbisphenylene trans-2-[60]fullerenobisacetamide). J Polym Sci A: Polym Chem 37:3632–3637

    Article  CAS  Google Scholar 

  • Xu H, Zheng JY (2010) Face-to-face alignment of porphyrin/fullerene nanowires linked by axial metal coordination. Macromol Chem Phys 211:2125–2131

    Article  CAS  Google Scholar 

  • Xu H, Zhu YZ, Zheng JY (2007) Synthesis of a series of meso-substituted zinc porphyrin derivatives and their assembly dyad with fulleropyrrolidine. Supramol Chem 19:365–372

    Article  Google Scholar 

  • Yamaguchi T, Ishii N, Tashiro K, Aida T (2003) Supramolecular peapods composed of a metalloporphyrin nanotube and fullerenes. J Am Chem Soc 125:13934–13935

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the 973 Program (2011CB932902), NSFC (Nos. 20802038, 21172126 and 21102068) for their generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyu Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Chen, C., Zhu, Y. et al. Synthesis and photophysical properties of polyamides containing in-chain porphyrin and [60]fullerene. J Nanopart Res 14, 765 (2012). https://doi.org/10.1007/s11051-012-0765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0765-0

Keywords

Navigation