Skip to main content
Log in

Fabrication, structure, and properties of Fe3O4@C encapsulated with YVO4:Eu3+ composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe3O4@C@YVO4:Eu3+ composites were prepared through a simple sol–gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe3O4 core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe3O4@C/YVO4:Eu3+ composites with well-crystallized and core–shell structure were prepared and the YVO4:Eu3+ luminescent layer decorating the Fe3O4@C core–shell microspheres are about 10 nm. In addition, the Fe3O4@C@YVO4:Eu3+ composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arruebo M, Marquina C, Ibarra MR et al (2006) Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mater 18:1911–1919. doi:10.1021/cm051646z

    Article  CAS  Google Scholar 

  • Buissette V, Giaume D, Gacoin T, Boilot JP (2006) Aqueous routes to lanthanide-doped oxide nanophosphors. J Mater Chem 16:529–539. doi:10.1039/B508656F

    Article  CAS  Google Scholar 

  • Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586. doi:10.1002/adma.200401101

    Article  CAS  Google Scholar 

  • Das A, Mukherjee P, Singla SK, Guturu P, Frost MC, Mukhopadhyay D, Shah VH, Patra CR (2010) Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. Nanotechnology 21:305102. doi:10.1088/0957-4484/21/30/305102

    Article  Google Scholar 

  • Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785. doi:10.1002/anie.200462551

    Article  CAS  Google Scholar 

  • Dong J, Xu Z, Kuznicki SM (2009) Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. Environ Sci Technol 43:3266–3271. doi:10.1021/es803306n

    Article  CAS  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542. doi:10.1039/B815548H

    Article  CAS  Google Scholar 

  • Gao L, Zhuang J, Leng N, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. doi:10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  • Jie P, Dong W, Gong JL (2011) PEGylated liposome coated QDs/mesoporous silica core–shell nanoparticles for molecular imaging. Chem Commun 47:3442–3444. doi:10.1039/C0CC05520D

    Article  Google Scholar 

  • Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131. doi:10.1038/nmat2329

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  CAS  Google Scholar 

  • Levy L, Sahoo Y, Kim KS, Bergey EJ, Prasad PN (2002) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem Mater 14:3715–3721. doi:10.1021/cm0203013

    Article  CAS  Google Scholar 

  • Li YH, Hong GY (2005) Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+. J Solid State Chem 178:645–649. doi:10.1016/j.jssc.2004.12.018

    Article  CAS  Google Scholar 

  • Li Y, Yan B, Deng CH, Yu WJ, Xu XQ, Yang PY et al (2007) Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Proteomics 7:2330–2339. doi:10.1002/pmic.200700112

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879. doi:10.1002/anie.200901566

    Article  CAS  Google Scholar 

  • Lu H, Yi G, Zhao S, Chen D, Guo LH, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14:1336–1341. doi:10.1039/B315103D

    Article  CAS  Google Scholar 

  • Mykhaylyk O, Antequera YS, Vlaskou D, Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2:2391–2411. doi:10.1038/nprot.2007.352

    Article  CAS  Google Scholar 

  • Park H, Yang J, Seo S, Kim K, Suh J, Kim D, Haam S, Yoo KH (2008) Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small 4:192–196. doi:10.1002/smll.200700807

    Article  CAS  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor M (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. J Nat Mater 8:331–336. doi:10.1038/nmat2398

    Article  CAS  Google Scholar 

  • Patra CR, Jing Y, Xu YH, Bhattacharya R, Mukhopadhyay D, Glockner JF, Wang JP, Mukherjee P (2010) A core–shell nanomaterial with endogenous therapeutic and diagnostic functions. Cancer Nanotechnol 1:13–18. doi:10.1007/s12645-010-0002-4

    Article  CAS  Google Scholar 

  • Perez JM (2007) Iron oxide nanoparticles: hidden talent. Nat Nanotechnol 2:535–536. doi:10.1038/nnano.2007.282

    Article  CAS  Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. This paper is part of a Journal of Materials Chemistry theme issue on inorganic nanoparticles for biological sensing, imaging, and therapeutics. J Mater Chem 19:6274–6293. doi:10.1039/b902394a

    Article  CAS  Google Scholar 

  • Shao MW, Li Q, Wu J, Xie B, Zhang XY, Qian YT (2002) Benzene-thermal route to carbon nanotubes at a moderate temperature. Carbon 40:2961–2963. doi:10.1016/S0008-6223(02)00207-5

    Article  CAS  Google Scholar 

  • Shariati S, Faraji M, Yamini Y, Rajabi AA (2011) Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 270:160–165. doi:10.1016/j.desal.2010.11.040

    Article  CAS  Google Scholar 

  • Shi D (2009) Integrated multifunctional nanosystems for medical diagnosis and treatment. Adv Funct Mater 19:3356–3373. doi:10.1002/adfm.200901539

    Article  CAS  Google Scholar 

  • Shi DL, Lian J, Wang W, Liu GK, He P, Dong ZY et al (2006) Luminescent carbon nanotubes by surface functionalization. Adv Mater 18:189–193. doi:10.1002/adma.200501680

    Article  CAS  Google Scholar 

  • Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601. doi:10.1002/anie.200352386

    Article  Google Scholar 

  • Sun G, Dong B, Cao M, Wei B, Hu C (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23:1587–1593. doi:10.1021/cm103441u

    CAS  Google Scholar 

  • Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983. doi:10.1021/cm030334y

    Article  CAS  Google Scholar 

  • Valero E, Tambalo S, Marzola P, Delgado JJ et al (2011) Magnetic nanoparticles-templated assembly of protein subunits: a new platform for carbohydrate-based MRI nanoprobes. J Am Chem Soc 133:4889–4895. doi:10.1021/ja110014p

    Article  CAS  Google Scholar 

  • Wang F, Tan WB, Zhang Y, Fan X, Wang M (2006) Luminescent nanomaterials for biological labelling. Nanotechnology 17:R1–R3. doi:10.1088/0957-4484/17/1/R01

    Article  CAS  Google Scholar 

  • Wang C, Tao S, Wei W, Meng C, Liu F, Han M (2010) Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. J Mater Chem 20:4635–4641. doi:10.1039/C000315H

    Article  CAS  Google Scholar 

  • Xu HY, Wang H, Jin TN, Yan H (2005) Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical solution deposition. Nanotechnology 16:65–69. doi:10.1088/0957-4484/16/1/014

    Article  CAS  Google Scholar 

  • Xu XQ, Deng CH, Gao MX, Yu WJ, Yang PY, Zhang XM (2006) Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater 18:3289–3293. doi:10.1002/adma.200601546

    Article  CAS  Google Scholar 

  • Yang PP, Quan ZW, Lu LL, Huang SS, Lin J (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29:4341–4347. doi:10.1016/j.biomaterials.2008.07.042

    Article  CAS  Google Scholar 

  • Yu M, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Article fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography. Chem Mater 14:2224–2231. doi:10.1021/cm011663y

    Article  CAS  Google Scholar 

  • Yu YL, Xie R, Zhang MJ, Li PF, Yang L, Ju XJ, Chu LY (2010) Monodisperse microspheres with poly(N-isopropylacrylamide) core and poly(2-hydroxyethyl methacrylate) shell. J Colloid Interface Sci 346:361–369. doi:10.1016/j.jcis.2010.03.021

    Article  CAS  Google Scholar 

  • Zeng TQ, Chen WW, Cirtiu CM, Moores A, Song G, Li C (2010) Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. J Green Chem 12:570–573. doi:10.1039/b920000b

    Article  CAS  Google Scholar 

  • Zhang Y, Pan S, Teng X, Luo Y, Li G (2008) Bifunctional magnetic-luminescent nanocomposites: Y2O3/Tb nanorods on the surface of iron oxide/silica core–shell nanostructures. J Phys Chem C 112:9623–9626. doi:10.1021/jp8015326

    Article  CAS  Google Scholar 

  • Zhang H, Gerson T, Varney ML, Singh RK, Vinogradov SV (2010) Multifunctional peptide–PEG intercalating conjugates: programmatic of gene delivery to the blood–brain barrier. Pharm Res 27:2528–2543. doi:10.1007/s11095-010-0256-x

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431. doi:10.1002/adma.200600504

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7885 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Tong, L., Liu, D. et al. Fabrication, structure, and properties of Fe3O4@C encapsulated with YVO4:Eu3+ composites. J Nanopart Res 14, 743 (2012). https://doi.org/10.1007/s11051-012-0743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0743-6

Keywords

Navigation