Skip to main content
Log in

Sedimentation of Fe3O4 nanosized magnetic particles in water solution enhanced in a gradient magnetic field

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The sedimentation dynamic of magnetite (Fe3O4) nanoparticles in water was investigated, both in the presence of a vertical gradient magnetic field and in the gravitational field only. The nanopowders (four samples with average particle diameter ranging from 16 to 84 nm) were prepared by a gas-condensation synthesis method. The sedimentation was monitored by measuring the light transmission coefficient k of the suspension as a function of time. The sedimentation process is of rather complex character for both the large and the small particles. Specifically, the light transmission reflects the different stages of the particle aggregation. Magnetite nanoparticles tend to aggregate into micron-sized aggregates which sediment rather rapidly in high concentrated suspensions (for example 5 g/L), even in the absence of a magnetic field. Gradient magnetic fields (for example H = 6 kOe, dH/dz = 1.6 kOe/cm) help to increase the sedimentation rate tremendously and reduce the total sedimentation time from several days up to several minutes—here for an average particle size of 16 nm. An effective removal of heavy metal pollutants (Cr, Cu, etc.) from water can be achieved using the optimal combination of the magnetite particle size, particle concentration in water suspension, and magnetic field strength and gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barkatt A, Pulvirenti AL, Adel-Hadadi MA, Viragah C, Senftle FE, Thorpe AN, Grant JR (2009) Composition and particle size of superparamagnetic corrosion products in tap water. Water Res 43(13):3319–3325

    Article  CAS  Google Scholar 

  • Berret J-F, Sandre O, Mauger A (2007) Size distribution of superparamagnetic particles determined by magnetic sedimentation. Langmuir 23(6):2993–2999

    Article  CAS  Google Scholar 

  • Buerge IJ, Hug SJ (1997) Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ Sci Technol 31(5):1426–1432

    Article  CAS  Google Scholar 

  • Eberbeck D, Wiekhorst F, Steinhoff U, Trahms L (2006) Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry. J Phys Condens Matter 18:S2829–S2846

    Article  CAS  Google Scholar 

  • Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94(5):3520–3528

    Article  CAS  Google Scholar 

  • Hsu KH, Wu JH, Huang YY, Wang LY, Lee HY, Lin JG (2005) Critical size effects on the magnetic resonance in Fe3O4 nanoparticles. J Appl Phys 97:114322-1-4

    Google Scholar 

  • Hu J, Lo IMC, Chen G (2004) Removal of Cr(VI) by magnetite nanoparticles. Water Sci Technol 50(12):139–146

    CAS  Google Scholar 

  • Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536

    Article  CAS  Google Scholar 

  • Iglesias O, Batlle X, Labarta A (2007) Modelling exchange bias in core/shell nanoparticles. J Phys Condens Matter 19:406232–406236

    Article  Google Scholar 

  • Illes E, Tombacz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295(1):115–123

    Article  CAS  Google Scholar 

  • Kortov VS, Ermakov AE, Zatsepin AF, Uimin MA, Nikiforov SV, Mysik AA, Gaviko VS (2008) Specific features of luminescence properties of nanostructured aluminum oxide. Phys Solid State 50(5):957–961

    Google Scholar 

  • Linnikov OD, Medvedeva IV, Rodina IV, Uimin MA, Yermakov AYe, Platonov VV, Osipov VV, Shevchenko VG (2010) Removal of Cr(VI) from aqueous solutions by magnetite nanoparticles. Proceedings of the IWA conference, Moscow, No. 64

  • Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954

    Article  CAS  Google Scholar 

  • Martinez-Pedrero F, El-Harrak A, Fernandez-Toledano JC, Tirado-Miranda M, Baudry J, Schmitt A, Bibette J, Callejas-Fernandes J (2008) Kinetic study of coupled field-induced aggregation and sedimentation processes arising in magnetic fluids. Phys Rev B 78:011403-1-6

    Google Scholar 

  • Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 105(3):904–913

    Article  CAS  Google Scholar 

  • Ong QK, Wei A, Lin XM (2009) Exchange bias in Fe/Fe3O4 core–shell magnetic nanoparticles mediated by frozen interfacial spins. Phys Rev B 80:134418-1-6

    Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290

    Article  CAS  Google Scholar 

  • Svoboda J, Zofka J (1983) Magnetic flocculation in secondary minimum. J Colloid Interface Sci 94:37–44

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MP, Veintemillas-Verdaguer S, Gonzáles-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for application in biomedicine. J Phys D 36(13):R182–R197

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3:417–433

    Google Scholar 

  • Tombácz E, Illés E, Majzik A, Hajdú A, Rideg N, Szekeres M (2007) Ageing in the inorganic nanoworld: example of magnetite nanoparticles in aqueous medium. Croat Chem Acta 80:503–515

    Google Scholar 

  • Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorbtion on maghemite nanoparticles. J Hazard Mater 166(2–3):1415–1420

    Article  Google Scholar 

  • Venditti F, Cuomo F, Ceglie A, Ambrosone L, Lopez F (2010) Effects of sulfate ions and slightly acidic pH conditions on Cr(VI) adsorption onto silica gelatin composite. J Hazard Mater 173:552–557

    Article  CAS  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin V (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(10):964–967

    Article  Google Scholar 

  • Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, Zhu J, Chen T (2009) Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J Hazard Mater 166(2–3):821–829

    Article  CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation. An overview. J Nanopart Res 5(3–4):323–332

    Article  CAS  Google Scholar 

  • Zhao G, Zhang H, Fan Q, Ren L, Chen Y, Wang X (2010) Sorption of copper(II) onto super-adsorbent of bentonite–polyacrylamide composites. J Hazard Mater 173:661–668

    Article  CAS  Google Scholar 

  • Zhong LC, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3d-flowerlike iron oxide nanostructures and their application in water research. Adv Mater 18(18):2426–2431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported from the grant N 12-I-2-2037 of the Ural Division of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Medvedeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedeva, I., Uimin, M., Yermakov, A. et al. Sedimentation of Fe3O4 nanosized magnetic particles in water solution enhanced in a gradient magnetic field. J Nanopart Res 14, 740 (2012). https://doi.org/10.1007/s11051-012-0740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0740-9

Keywords

Navigation