Skip to main content

Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity

Abstract

Multi-walled carbon nanotubes (MWCNTs) are functionalized at the sp2 C–H defect sites with 3,4-diaminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid/phosphorous pentoxide medium. Owing to enhanced surface polarity, the resulting 3,4-diaminobenzoyl-functionalized MWCNTs (DAB-MWCNT) are highly dispersible in polar solvents, such as ethanol, N-methyl-2-pyrrolidone, and methanesulfonic acid. The absorption and emission properties of DAB-MWCNT in solution state are qualitatively shown to be sensitive to the pH in the environment. The DAB-MWCNT is used as a stable platform on which to deposit platinum nanoparticles (PNP). The PNP/DAB-MWCNT hybrid displays high electrocatalytic activity with good electrochemical stability for an oxygen reduction reaction under an alkaline condition.

Graphical Abstract

Multi-walled carbon nanotubes (MWCNTs) were functionalized with 3,4-diaminobenzoic acid to produce 3,4-diaminobenzoyl-functionalized MWCNT (DAB-MWCNT). Platinum nanoparticles (PNP) were deposited to DAB-MWCNT. The resulting PNP/DAB-MWCNT hybrid displayed high electrocatalytic activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270):1924

    Article  CAS  Google Scholar 

  • Alexeyeva N, Matisen L, Saar A, Laaksonen P, Kontturi K, Tammeveski K (2010) Kinetics of oxygen reduction on gold nanoparticle/multi-walled carbon nanotube hybrid electrodes in acid media. J Electroanal Chem 642(1):6–12

    Article  CAS  Google Scholar 

  • Baek JB, Lyons CB, Tan LS (2004) Covalent modification of vapour-grown carbon nanofibers via direct Friedel–Crafts acylation in polyphosphoric acid. J Mater Chem 14(13):2052–2056

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  • Carneiro O, Covas J, Bernardo C, Caldeira G, Van Hattum F, Ting JM, Alig R, Lake M (1998) Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Compos Sci Technol 58(3–4):401–407

    Article  CAS  Google Scholar 

  • Charlier JC (2002) Defects in carbon nanotubes. Acc Chem Res 35(12):1063–1069

    Article  CAS  Google Scholar 

  • Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou W, Fray D, Windle A (2000) Carbon nanotube and polypyrrole composites: coating and doping. Adv Mater 12(7):522–526

    Article  CAS  Google Scholar 

  • Dai L, Mau AWH (2001) Controlled synthesis and modification of carbon nanotubes and C 60: carbon nanostructures for advanced polymeric composite materials. Adv Mater 13(12–13):899–913

    Article  CAS  Google Scholar 

  • Eo SM, Oh SJ, Tan LS, Baek JB (2008) Poly (2,5-benzoxazole)/carbon nanotube composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild poly (phosphoric acid). Eur Polym J 44(6):1603–1612

    Article  CAS  Google Scholar 

  • Han SW, Oh SJ, Tan LS, Baek JB (2008) One-pot purification and functionalization of single-walled carbon nanotubes in less-corrosive poly (phosphoric acid). Carbon 46(14):1841–1849

    Article  CAS  Google Scholar 

  • Heller DA, Barone PW, Strano MS (2005) Sonication-induced changes in chiral distribution: a complication in the use of single-walled carbon nanotube fluorescence for determining species distribution. Carbon 43(3):651–653

    Article  CAS  Google Scholar 

  • Hirsch A (2002) Functionalization of single walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

    Article  CAS  Google Scholar 

  • Hu H, Zhao B, Itkis ME, Haddon RC (2003) Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107(50):13838–13842

    Article  CAS  Google Scholar 

  • Huang W, Lin Y, Taylor S, Gaillard J, Rao AM, Sun YP (2002) Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett 2(3):231–234

    Article  CAS  Google Scholar 

  • Jeon IY, Lee HJ, Choi YS, Tan LS, Baek JB (2008) Semimetallic transport in nanocomposites derived from grafting of linear and hyperbranched poly (phenylene sulfide) s onto the surface of functionalized multi-walled carbon nanotubes. Macromolecules 41(20):7423–7432

    Article  CAS  Google Scholar 

  • Kim SN, Slocik JM, Naik RR (2010) Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces. Small 6:1992–1995

    Article  CAS  Google Scholar 

  • Koizumi T, Fukuju K (2010) Cyclometalated platinum (II) complexes bearing o-phenylenediamine derivatives: synthesis and electrochemical behavior. J Organomet Chem 696(6):1232–1235

    Article  Google Scholar 

  • Lahiff E, Leahy R, Coleman JN, Blau WJ (2006) Physical properties of novel free-standing polymer-nanotube thin films. Carbon 44(8):1525–1529

    Article  CAS  Google Scholar 

  • Laviron E (1979a) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28

    Article  CAS  Google Scholar 

  • Laviron E (1979b) The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263–270

    Article  CAS  Google Scholar 

  • Lee SY, Yamada M, Miyake M (2005) Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon 43(13):2654–2663

    Article  CAS  Google Scholar 

  • Lee HJ, Han SW, Kwon YD, Tan LS, Baek JB (2008) Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide. Carbon 46(14):1850–1859

    Article  CAS  Google Scholar 

  • Li J, Moskovits M, Haslett TL (1998) Nanoscale electroless metal deposition in aligned carbon nanotubes. Chem mater 10(7):1963–1967

    Article  CAS  Google Scholar 

  • Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107(26):6292–6299

    Article  CAS  Google Scholar 

  • Lorencon E, Ferlauto AS, de Oliveira S, Miquita DR, Resende RR, Lacerda RG, Ladeira LO (2009) Direct production of carbon nanotubes/metal nanoparticles hybrids from a redox reaction between metal ions and reduced carbon nanotubes. ACS Appl Mater Interfaces 1(10):2104–2106

    Article  CAS  Google Scholar 

  • Mandal S, Roy D, Chaudhari RV, Sastry M (2004) Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions. Chem mater 16(19):3714–3724

    Article  CAS  Google Scholar 

  • Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites. Adv Mater 11(11):937–941

    Article  CAS  Google Scholar 

  • Shi Y, Yang R, Yuet PK (2009) Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst. Carbon 47(4):1146–1151

    Article  CAS  Google Scholar 

  • Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104

    Article  CAS  Google Scholar 

  • Tammeveski K, Tenno T, Claret J, Ferrater C (1997) Electrochemical reduction of oxygen on thin-film Pt electrodes in 0.1 M KOH. Electrochim Acta 42(5):893–897

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

    Article  CAS  Google Scholar 

  • Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2(2):182–193

    Article  CAS  Google Scholar 

  • Wolfe JF (1988) Polybenzothiazoles and polybenzoxazoles. In Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York 11:601–635

  • Xue B, Chen P, Hong Q, Lin J, Tan KL (2001) Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem 11(9):2378–2381

    Article  CAS  Google Scholar 

  • Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2006) Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study. Phys Chem Chem Phys 8(42):4932–4939

    Article  CAS  Google Scholar 

  • Yu R, Chen L, Liu Q, Lin J, Tan KL, Ng SC, Chan HSO, Xu GQ, Hor TSA (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem mater 10(3):718–722

    Article  CAS  Google Scholar 

  • Zhang Y, Shi Z, Gu Z, Iijima S (2000) Structure modification of single-wall carbon nanotubes. Carbon 38(15):2055–2059

    Article  CAS  Google Scholar 

  • Zhou C, Wang S, Zhuang Q, Han Z (2008) Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes. Carbon 46(9):1232–1240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by funding from World Class University (WCU), US-Korea NBIT, and Basic Research Laboratory (BRL) programs supported by the National Research Foundation (NRF) and the Ministry of Education, Science and Technology (MEST) of Korea, US Air Force Office of Scientific Research, and Asian Office of Aerospace R&D (AFOSR-AOARD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Beom Baek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, HJ., Kang, JY., Jeon, IY. et al. Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity. J Nanopart Res 14, 704 (2012). https://doi.org/10.1007/s11051-011-0704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0704-5

Keywords

  • Platinum nanoparticles
  • Multi-walled carbon nanotubes
  • Functionalization
  • Electrocatalytic activity