Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity

  • Hyun-Jung Choi
  • Ji-Ye Kang
  • In-Yup Jeon
  • Soo-Mi Eo
  • Loon-Seng Tan
  • Jong-Beom BaekEmail author
Research Paper


Multi-walled carbon nanotubes (MWCNTs) are functionalized at the sp2 C–H defect sites with 3,4-diaminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid/phosphorous pentoxide medium. Owing to enhanced surface polarity, the resulting 3,4-diaminobenzoyl-functionalized MWCNTs (DAB-MWCNT) are highly dispersible in polar solvents, such as ethanol, N-methyl-2-pyrrolidone, and methanesulfonic acid. The absorption and emission properties of DAB-MWCNT in solution state are qualitatively shown to be sensitive to the pH in the environment. The DAB-MWCNT is used as a stable platform on which to deposit platinum nanoparticles (PNP). The PNP/DAB-MWCNT hybrid displays high electrocatalytic activity with good electrochemical stability for an oxygen reduction reaction under an alkaline condition.

Graphical Abstract

Multi-walled carbon nanotubes (MWCNTs) were functionalized with 3,4-diaminobenzoic acid to produce 3,4-diaminobenzoyl-functionalized MWCNT (DAB-MWCNT). Platinum nanoparticles (PNP) were deposited to DAB-MWCNT. The resulting PNP/DAB-MWCNT hybrid displayed high electrocatalytic activity.


Platinum nanoparticles Multi-walled carbon nanotubes Functionalization Electrocatalytic activity 



This project was supported by funding from World Class University (WCU), US-Korea NBIT, and Basic Research Laboratory (BRL) programs supported by the National Research Foundation (NRF) and the Ministry of Education, Science and Technology (MEST) of Korea, US Air Force Office of Scientific Research, and Asian Office of Aerospace R&D (AFOSR-AOARD).

Supplementary material

11051_2011_704_MOESM1_ESM.doc (82 kb)
Supplementary material 1 (DOC 82 kb)


  1. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270):1924CrossRefGoogle Scholar
  2. Alexeyeva N, Matisen L, Saar A, Laaksonen P, Kontturi K, Tammeveski K (2010) Kinetics of oxygen reduction on gold nanoparticle/multi-walled carbon nanotube hybrid electrodes in acid media. J Electroanal Chem 642(1):6–12CrossRefGoogle Scholar
  3. Baek JB, Lyons CB, Tan LS (2004) Covalent modification of vapour-grown carbon nanofibers via direct Friedel–Crafts acylation in polyphosphoric acid. J Mater Chem 14(13):2052–2056CrossRefGoogle Scholar
  4. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New YorkGoogle Scholar
  5. Carneiro O, Covas J, Bernardo C, Caldeira G, Van Hattum F, Ting JM, Alig R, Lake M (1998) Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Compos Sci Technol 58(3–4):401–407CrossRefGoogle Scholar
  6. Charlier JC (2002) Defects in carbon nanotubes. Acc Chem Res 35(12):1063–1069CrossRefGoogle Scholar
  7. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou W, Fray D, Windle A (2000) Carbon nanotube and polypyrrole composites: coating and doping. Adv Mater 12(7):522–526CrossRefGoogle Scholar
  8. Dai L, Mau AWH (2001) Controlled synthesis and modification of carbon nanotubes and C 60: carbon nanostructures for advanced polymeric composite materials. Adv Mater 13(12–13):899–913CrossRefGoogle Scholar
  9. Eo SM, Oh SJ, Tan LS, Baek JB (2008) Poly (2,5-benzoxazole)/carbon nanotube composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild poly (phosphoric acid). Eur Polym J 44(6):1603–1612CrossRefGoogle Scholar
  10. Han SW, Oh SJ, Tan LS, Baek JB (2008) One-pot purification and functionalization of single-walled carbon nanotubes in less-corrosive poly (phosphoric acid). Carbon 46(14):1841–1849CrossRefGoogle Scholar
  11. Heller DA, Barone PW, Strano MS (2005) Sonication-induced changes in chiral distribution: a complication in the use of single-walled carbon nanotube fluorescence for determining species distribution. Carbon 43(3):651–653CrossRefGoogle Scholar
  12. Hirsch A (2002) Functionalization of single walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859CrossRefGoogle Scholar
  13. Hu H, Zhao B, Itkis ME, Haddon RC (2003) Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107(50):13838–13842CrossRefGoogle Scholar
  14. Huang W, Lin Y, Taylor S, Gaillard J, Rao AM, Sun YP (2002) Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett 2(3):231–234CrossRefGoogle Scholar
  15. Jeon IY, Lee HJ, Choi YS, Tan LS, Baek JB (2008) Semimetallic transport in nanocomposites derived from grafting of linear and hyperbranched poly (phenylene sulfide) s onto the surface of functionalized multi-walled carbon nanotubes. Macromolecules 41(20):7423–7432CrossRefGoogle Scholar
  16. Kim SN, Slocik JM, Naik RR (2010) Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces. Small 6:1992–1995CrossRefGoogle Scholar
  17. Koizumi T, Fukuju K (2010) Cyclometalated platinum (II) complexes bearing o-phenylenediamine derivatives: synthesis and electrochemical behavior. J Organomet Chem 696(6):1232–1235CrossRefGoogle Scholar
  18. Lahiff E, Leahy R, Coleman JN, Blau WJ (2006) Physical properties of novel free-standing polymer-nanotube thin films. Carbon 44(8):1525–1529CrossRefGoogle Scholar
  19. Laviron E (1979a) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28CrossRefGoogle Scholar
  20. Laviron E (1979b) The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263–270CrossRefGoogle Scholar
  21. Lee SY, Yamada M, Miyake M (2005) Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon 43(13):2654–2663CrossRefGoogle Scholar
  22. Lee HJ, Han SW, Kwon YD, Tan LS, Baek JB (2008) Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide. Carbon 46(14):1850–1859CrossRefGoogle Scholar
  23. Li J, Moskovits M, Haslett TL (1998) Nanoscale electroless metal deposition in aligned carbon nanotubes. Chem mater 10(7):1963–1967CrossRefGoogle Scholar
  24. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107(26):6292–6299CrossRefGoogle Scholar
  25. Lorencon E, Ferlauto AS, de Oliveira S, Miquita DR, Resende RR, Lacerda RG, Ladeira LO (2009) Direct production of carbon nanotubes/metal nanoparticles hybrids from a redox reaction between metal ions and reduced carbon nanotubes. ACS Appl Mater Interfaces 1(10):2104–2106CrossRefGoogle Scholar
  26. Mandal S, Roy D, Chaudhari RV, Sastry M (2004) Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions. Chem mater 16(19):3714–3724CrossRefGoogle Scholar
  27. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites. Adv Mater 11(11):937–941CrossRefGoogle Scholar
  28. Shi Y, Yang R, Yuet PK (2009) Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst. Carbon 47(4):1146–1151CrossRefGoogle Scholar
  29. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104CrossRefGoogle Scholar
  30. Tammeveski K, Tenno T, Claret J, Ferrater C (1997) Electrochemical reduction of oxygen on thin-film Pt electrodes in 0.1 M KOH. Electrochim Acta 42(5):893–897CrossRefGoogle Scholar
  31. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136CrossRefGoogle Scholar
  32. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2(2):182–193CrossRefGoogle Scholar
  33. Wolfe JF (1988) Polybenzothiazoles and polybenzoxazoles. In Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York 11:601–635Google Scholar
  34. Xue B, Chen P, Hong Q, Lin J, Tan KL (2001) Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem 11(9):2378–2381CrossRefGoogle Scholar
  35. Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2006) Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study. Phys Chem Chem Phys 8(42):4932–4939CrossRefGoogle Scholar
  36. Yu R, Chen L, Liu Q, Lin J, Tan KL, Ng SC, Chan HSO, Xu GQ, Hor TSA (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem mater 10(3):718–722CrossRefGoogle Scholar
  37. Zhang Y, Shi Z, Gu Z, Iijima S (2000) Structure modification of single-wall carbon nanotubes. Carbon 38(15):2055–2059CrossRefGoogle Scholar
  38. Zhou C, Wang S, Zhuang Q, Han Z (2008) Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes. Carbon 46(9):1232–1240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hyun-Jung Choi
    • 1
  • Ji-Ye Kang
    • 1
  • In-Yup Jeon
    • 1
  • Soo-Mi Eo
    • 1
  • Loon-Seng Tan
    • 2
  • Jong-Beom Baek
    • 1
    Email author
  1. 1.Interdisciplinary School of Green Energy/Institute of Advanced Materials and DevicesUlsan National Institute of Science and TechnologyUlsanSouth Korea
  2. 2.Nanostructured and Biological Materials Branch (AFRL/RXBN), Materials and Manufacturing DirectorateAir Force Research Laboratory, Wright-Patterson AFBDaytonUSA

Personalised recommendations