Skip to main content
Log in

TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Remodeling of the extracellular matrix resulting from increased secretion of metalloproteinase enzymes is implicated in restenosis following balloon angioplasty. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases play an essential role in both normal and pathological extracellular matrix degradation. Tissue inhibitor of matrix metalloproteinase-2 is the most extensively studied tissue inhibitor of metalloproteinases in myocardial tissue in animal models and clinical examples of cardiac disease; therefore it is selected for this study. Gene transfer of tissue inhibitor of matrix metalloproteinase-2 may have a therapeutic potential by inhibition of matrix metalloproteinase activity. We have used PEG-lated nanoparticles poly(St/PEG-EEM/DMAPM) which were synthesized previously in our laboratory. The nanoparticles, with an average size of 77.6 ± 2.05 nm with a zeta potential of +64. 4 ± 1.14 mV and 201.9 ± 1.83 nm with +54.2 ± 0.77 mV were used in the transfection studies. Zeta Potential values and size of polyplex were appropriate for an effective transfection. TIMP-2 expression was detected by western blotting. Increased protein level in smooth muscle cells according to non-transfected smooth muscle cells confirms the successful delivery and expression of the tissue inhibitor of matrix metalloproteinase-2 gene with the non-viral vector transfection approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beohar N, Flaherty JD, Davidson CJ, Maynard RC, Robbins JD, Shah AP, Choi JW, MacDonald LA, Jorgensen JP, Pinto JV, Chandra S, Klaus HM, Wang NC, Harris KR, Decker R, Bonow RO (2004) Antirestenotic effects of a locally delivered caspase inhibitor in a balloon injury model. Circulation 109:108–113. doi:10.1161/01.CIR.0000105724.30980

    Article  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergn MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  Google Scholar 

  • Chen X, Fujise K (2005) Restenosis: emerging molecular targets going beyond drug-eluting stents. Drug Discov Today 2:1–9. doi:10.1016/j.ddmec.2005.05.025

    CAS  Google Scholar 

  • Dinçer S, Tuncel A, Pişkin E (2002) A potential gene delivery vector: nisopropylacrylamide–ethyleneimine block copolymers. Macromol Chem Phys 203:1460–1465. doi:10.1002/1521-3935(200207)203:10/1

    Article  Google Scholar 

  • Dinçer S, Türk M, Pişkin E (2005) Intelligent polymers as non-viral vectors. Gene Ther 12:139–145. doi:10.1038/sj.gt.3302628

    Article  Google Scholar 

  • Fernandez HA, Kallenbach K, Seghezzi G, Mehrara B, Apazidis A, Baumann F, Grossi EA, Colvin S, Mignatti P, Galloway AC (1998) Modulation of matrix metalloproteinase activity in human saphenous vein grafts using adenovirus mediated gene transfer. Surgery 124:129–136. doi:10.1016/S0039-6060(98)70112-6

    Article  CAS  Google Scholar 

  • Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethleneimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279. doi:10.1023/A:1014861900478

    Article  CAS  Google Scholar 

  • George SJ, Lloyd CT, Angelini GD, Newby AC, Baker AH (2000) Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. Circulation 101:296–304. doi:10.1161/01.CIR.101.3.296

    CAS  Google Scholar 

  • Goncalves C, Pichon C, Guerin B, Midoux P (2002) Intracellular processing and stability of DNA complexed with histidylated polylysine conjugates. J Gene Med 4:271–281. doi:10.1002/jgm.27

    Article  Google Scholar 

  • Goncalves C, Mennesson E, Fuchs R, Gorvel JP, Midoux P, Pichon C (2004) Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol Ther 10:373–385. doi:10.1016/j.ymthe.2004.05.023

    Article  CAS  Google Scholar 

  • Guven G, Tuncel A, Piskin E (2004) Monosized cationic nanoparticles by emulsifier free emulsion polymerization and their characterization. Colloid Polym Sci 282:708–715

    Google Scholar 

  • Guven G, Laçin N, Pişkin E (2008) Monosize polycationic nanoparticles as non-viral vectors for gene transfer to HeLa cells. J Tissue Eng Regen Med 2:155–163. doi:10.1002/term

    Article  CAS  Google Scholar 

  • Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  CAS  Google Scholar 

  • Hu Y, Baker AH, Zou Y, Newby AC, Xu Q (2001) Local gene transfer of tissue inhibitor of metalloproteinase-2 influences vein graft remodeling in a mouse model. Arterioscler Thromb Vasc Biol 21:1275–1280. doi:10.1161/hq0801.093658

    Article  CAS  Google Scholar 

  • Jeong JH, Song SH, Lim DW, Lee H, Park TG (2001) DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release 73:391–399. doi:10.1016/S0168-3659(01)00310-8

    Article  CAS  Google Scholar 

  • Jourdan-LeSaux C, Zhang J, Lindsey ML (2010) Extracellular matrix roles during cardiac repair. Life Sciences 87:391–400. doi:10.1016/j.lfs.2010.07.010

    Article  CAS  Google Scholar 

  • Kopatz I, Remy JS, Behr JP (2004) A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med 6:769–776. doi:10.1002/jgm.558

    Article  CAS  Google Scholar 

  • Kopecek J, Kopeckova P, Minko T, Lu Z (2000) HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur Pharm J Biopharm 50:61–81. doi:10.1016/S0939-6411(00)00075-8

    Article  CAS  Google Scholar 

  • Laçin N, Utkan GG, Kutsal T, Pişkin E (2011) Thermo-sensitive nipa-based copolymer and monosize polycationic nanoparticle for non-viral gene transfer to smooth muscle cells. J Biomater Sci 23(2012):577–592. doi:10.1163/092050611X555272

    Google Scholar 

  • Liang K, Liu F, Huang L (2004) Targeted gene delivery: the role of peptide nucleic acid in. Int J Peptide Res Ther 10:161–167. doi:0.1007/BF02484557

    Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874. doi:10.1038/nature01323

    Article  CAS  Google Scholar 

  • Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114:100–109. doi:10.1016/j.jconrel.2006.04.014

    Article  CAS  Google Scholar 

  • Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83:97–111. doi:10.1078/0171-9335-00363

    Article  CAS  Google Scholar 

  • Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 93:12349–12354

    Article  CAS  Google Scholar 

  • Pişkin E (2005) Stimuli-responsive polymers in gene delivery. Exp Rev Med Devices 2:501–509. doi:10.1586/17434440.2.4.501

    Article  Google Scholar 

  • Pişkin E, Dinçer S, Türk M (2004) Gene delivery: intelligent but just at the beginning. J Biomater Sci 15:1181–1202. doi:10.1163/1568562041753016

    Article  Google Scholar 

  • Raffetto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–359. doi:10.1016/j.bcp.2007.07.004

    Article  CAS  Google Scholar 

  • Ruponen M, Honkakoski P, Tammi M, Urtti A (2004) Cell-surface glycosaminoglycans inhibit cation-mediated gene transfer. J Gene Med 6:405–414. doi:10.1002/jgm.522

    Article  CAS  Google Scholar 

  • Siow RCM, Churchman AT (2007) Adventitial growth factor signalling and vascular remodelling: Potential of perivascular gene transfer from the outside-in. Cardiovasc Res 75(4):659–668. doi:10.1016/j.cardiores.2007.06.007

    Article  CAS  Google Scholar 

  • Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62:27–34. doi:10.1007/s00253-003-1321-8

    Article  CAS  Google Scholar 

  • Tulis DA, Mnjoyan ZH, Schiesser RL, Shelat HS, Evans AJ, Zoldhelyi P, Fujis K (2003) Adenoviral gene transfer of fortilin attenuates neointima formation through suppression of vascular smooth muscle cell proliferation and migration. Circulation 107:98–105. doi:10.1161/01.CIR.0000047675.86603.EB

    Article  CAS  Google Scholar 

  • Turk M, Dincer S, Yuluğ IG, Piskin E (2004) In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J Control Release 96:325–340. doi:10.1016/j.Jconrel.2004.01.013

    Article  CAS  Google Scholar 

  • Türk M, Dinçer S, Pişkin E (2007) Smart and cationic poly(NIPA)/PEI block copolymers as non-viral vectors: in vitro and in vivo transfection studies. J Tissue Eng Regen Med 1:377–388. doi:10.1002/term.47

    Article  Google Scholar 

  • Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211:19–26. doi:10.1002/jcp.20948

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Turkish Scientific and Technological Council (Turkish Scientific and Technological Research Council, TÜBITAK; Project No. 104S334). Erhan Pişkin was also supported by the Turkish Academy of Sciences (TÜBA) as a full member.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelisa Laçin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laçin, N., Utkan, G., Kutsal, T. et al. TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells. J Nanopart Res 14, 694 (2012). https://doi.org/10.1007/s11051-011-0694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0694-3

Keywords

Navigation