Advertisement

Electron beam-induced structural transformations of MoO3 and MoO3−x crystalline nanostructures

  • D. E. Diaz-Droguett
  • A. Zuñiga
  • G. Solorzano
  • V. M. Fuenzalida
Research Paper

Abstract

Electron beam-induced damage and structural changes in MoO3 and MoO3−x single crystalline nanostructures were revealed by in situ transmission electron microscopy (TEM) examination (at 200 kV) after few minutes of concentrating the electron beam onto small areas (diameters between 25 and 200 nm) of the samples. The damage was evaluated recording TEM images, while the structural changes were revealed acquiring selected area electron diffraction patterns and high resolution transmission electron microscopy (HRTEM) images after different irradiation times. The as-received nanostructures of orthorhombic MoO3 were transformed to a Magnéli’s phase of the oxide (γ-Mo4O11) after ~10 min of electron beam irradiation. The oxygen loss from the oxide promoted structural changes. HRTEM observations showed that, in the first stage of the reduction, oxygen vacancies generated by the electron beam are accommodated by forming crystallographic shear planes. At a later stage of the reduction process, a polycrystalline structure was developed with highly oxygen-deficient grains. The structural changes can be attributed to the local heating of the irradiated zone combined with radiolysis.

Keywords

Electron beam Molybdenum oxide Nanostructures Magnéli’s phase TEM 

Notes

Acknowledgments

The authors acknowledge to the Chilean government for the Fondecyt contract 1070789 and Mecesup contract UCH0205. D. E. D-D acknowledges to the Postdoctoral Fondecyt project 3110035 and the help from Dr. Mauricio E. Pilleux.

References

  1. Bertrand O, Dufour LC (1980) X-ray and electron microscopy investigation of the topotactic transformation of MoO3 into MoO2. Phys Stat Sol A60:507–519. doi: 10.1002/pssa.2210600222 CrossRefGoogle Scholar
  2. Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl Catal A 145:1–48. doi: 10.1016/0926-860X(96)00138-X Google Scholar
  3. Bursill LA (1969) Crystallographic shear in molybdenum trioxide. Proc R Soc Lond A 311:267–290. doi: 10.1098/rspa.1969.0118 CrossRefGoogle Scholar
  4. Delannay F (1982) On the reduction of orthorhombic MoO3 to MoO2. Phys Stat Sol A 73:529–537. doi: 10.1002/pssa.2210730228 CrossRefGoogle Scholar
  5. Diaz-Droguett DE, Fuenzalida VM (2010) One-step synthesis of MoO3 and MoO3−x nanostructures by condensation in gas: effect of the carrier gas. J Nanosci Nanotechnol 10:6694–6706. doi: 10.1166/jnn.2010.2520 CrossRefGoogle Scholar
  6. Diaz-Droguett DE, Fuenzalida VM, Diaz-Espinoza MS, Solórzano G (2008a) Electron beam effects on amorphous molybdenum oxide nanostructures grown by condensation in hydrogen. J Mater Sci 43:591–596. doi: 10.1007/s10853-007-1602-1 CrossRefGoogle Scholar
  7. Diaz-Droguett DE, Fuenzalida VM, Solórzano G (2008b) Nanostructures of crystalline molybdenum trioxide grown by condensation in a carrier gas. J Nanosci Nanotechnol 8:5977–5984. doi: 10.1166/jnn.2008.332 CrossRefGoogle Scholar
  8. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409. doi: 10.1016/j.micron.2004.02.003 CrossRefGoogle Scholar
  9. Fleisch TH, Zajact GW, Schreiner JO, Mains GJ (1986) An XPS study of the UV photoreduction of transition and noble metal oxides. Appl Surf Sci 26:488–497. doi: 10.1016/0169-4332(86)90120-0 CrossRefGoogle Scholar
  10. Grasselli RK (1999) Advances and future trends in selective oxidation and ammoxidation catalysis. Catal Today 49:141–153. doi: 10.1016/S0920-5861(98)00418-0 Google Scholar
  11. Haber J, Lalik E (1997) Catalytic properties of MoO3 revisited. Catal Today 33:119-137. doi: 10.1016/S0920-5861(96)00107-1 Google Scholar
  12. Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, CambridgeGoogle Scholar
  13. Hobbs LW (1979) Introduction to analytic electron microscopy. Plenum Press, New YorkGoogle Scholar
  14. Hobbs LW, Pascucci MR (1980) Radiolysis and defect structure in electron-irradiated α-quartz. J Phys Colloq 41:C6-237–C6-242. doi: 10.1051/jphyscol:1980660 CrossRefGoogle Scholar
  15. Magnéli A (1953) Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides. Acta Cryst 6:495–500. doi: 10.1107/S0365110X53001381 CrossRefGoogle Scholar
  16. Rao CNR, Raveau B (1998) Transition metal oxides: structure, properties, and synthesis of ceramic oxides. Wiley-VCH, New YorkGoogle Scholar
  17. Sian TS, Reddy GB (2004) Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Sol Energy Mater Sol Cells 82:375–386. doi: 10.1016/j.solmat.2003.12.007 CrossRefGoogle Scholar
  18. Su DS (2002) Electron beam induced changes in transition metal oxides. Anal Bioanal Chem 374:732–735. doi: 10.1007/s00216-002-1377-9 CrossRefGoogle Scholar
  19. Vincent H, Marezio M (1989) Low dimensional electronic properties of molybdenum bronzes and oxides. Kluwer Academic Publishers, DordrechtGoogle Scholar
  20. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy, Physical Electronics Division, Perkin-Elmer, Eden Prairie, MNGoogle Scholar
  21. Wang D, Su DS, Schlögl R (2004) Electron beam induced transformations of MoO3 to MoO2 and a new phase MoO. Z Anorg Allg Chem 630:1007–1017. doi: 10.1002/zaac.200400052 CrossRefGoogle Scholar
  22. Zhang JP, Marks LD (1989) Symmetry in DIET phase transitions. Surf Sci 222:13–20. doi: 10.1016/0039-6028(89)90330-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • D. E. Diaz-Droguett
    • 1
    • 2
  • A. Zuñiga
    • 3
  • G. Solorzano
    • 4
  • V. M. Fuenzalida
    • 1
  1. 1.Departamento de Fisica, Facultad de Ciencias Fisicas y MatematicasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Fisica, Facultad de FisicaPontificia Universidad Catolica de ChileSantiagoChile
  3. 3.Departamento de Ingenieria Mecánica, Facultad de Ciencias Fisicas y MatematicasUniversidad de ChileSantiagoChile
  4. 4.Departamento de Ciencia dos Materiais e Metalurgia, DCMMPUC-RIORio de JaneiroBrazil

Personalised recommendations