Skip to main content
Log in

Size-tuneable synthesis of nickel nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A facile method is described for synthesising nickel nanoparticles via the thermal decomposition of an organometallic precursor in the presence of excess n-trioctylphosphine as a capping ligand. For the first time, alkylamines with different chain lengths were employed as size-limiting agents in this synthesis. A direct correlation is demonstrated between the size of the alkylamine ligands used and the mean diameter of the nickel nanoparticles obtained. The use of bulky oleylamine as a size-limiting agent over a reaction period of 30 min led to the growth of nickel nanoparticles with a mean diameter of 2.8 ± 0.9 nm. The employment of less bulky N,N-dimethylhexadecylamine groups led to the growth of nickel nanoparticles with a mean diameter of 4.4 ± 0.9 nm. By increasing the reaction time from 30 to 240 min, while employing oleylamine as the size-limiting agent, the mean diameter of the nickel nanoparticles was increased from 2.8 ± 0.9 to 5.1 ± 0.7 nm. Decreasing the amount of capping ligand present in the reaction system allowed further growth of the nickel nanoparticles to 17.8 ± 1.3 nm. The size, structure and morphology of the nanoparticles synthesised were characterised by transmission electron microscopy and powder X-ray diffraction; while magnetic measurements indicated that the particles were superparamagnetic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed J, Sharma S, Ramanujachary KV, Lofland SE, Ganguli AK (2009) Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt–nickel alloy nanoparticles. J Colloid Interf Sci 336(2):814–819. doi:10.1016/j.jcis.2009.04.062

    Article  CAS  Google Scholar 

  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interf Sci 212(2):474–482

    Article  CAS  Google Scholar 

  • Bala T, Gunning RD, Venkatesan M, Godsell JF, Roy S, Ryan KM (2009) Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium. Nanotechnology 20(41). doi:10.1088/0957-4484/20/41/415603

  • Chen YZ, Peng DL, Lin DP, Luo XH (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18(50). doi:10.1088/0957-4484/18/50/505703

  • Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE press, A Wiley and Sons, Inc., New York

    Google Scholar 

  • Davar F, Fereshteh Z, Salavati-Niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloy Compd 476(1–2):797–801. doi:10.1016/j.jallcom.2008.09.121

    Article  CAS  Google Scholar 

  • Dave SR, Gao XH (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdiscipl Rev Nanomed Nanobiotechnol 1(6):583–609. doi:10.1002/wnan.51

    Article  CAS  Google Scholar 

  • Dharmaraj N, Prabu P, Nagarajan S, Kim CH, Park JH, Kim HY (2006) Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Mater Sci Eng B Solid State Mater Adv Technol 128(1–3):111–114. doi:10.1016/j.mseb.2005.11.021

    CAS  Google Scholar 

  • Du DHC (2008) Recent advancements and future challenges of storage systems. Proc IEEE 96(11):1875–1886. doi:10.1109/jproc.2008.2004321

    Article  Google Scholar 

  • Farrell D, Majetich SA, Wilcoxon JP (2003) Preparation and characterization of monodisperse Fe nanoparticles. J Phys Chem B 107(40):11022–11030. doi:10.1021/jp0351831

    Article  CAS  Google Scholar 

  • Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles. Solid State Ion 32–3:198–205

    Article  Google Scholar 

  • Galvez N, Sanchez P, Dominguez-Vera JM, Soriano-Portillo A, Clemente-Leon M, Coronado E (2006) Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. J Mater Chem 16(26):2757–2761. doi:10.1039/b604860a

    Article  CAS  Google Scholar 

  • Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18(38):S2919–S2934. doi:10.1088/0953-8984/18/38/s26

    Article  CAS  Google Scholar 

  • Hyeon T, Lee SS, Park J, Chung Y, Bin Na H (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801. doi:10.1021/ja016812s

    Article  CAS  Google Scholar 

  • Kim CW, Cha HG, Kim YH, Jadhav AP, Ji ES, Kang DI, Kang YS (2009) Surface investigation and magnetic behavior of co nanoparticles prepared via a surfactant-mediated polyol process. J Phys Chem C 113(13):5081–5086. doi:10.1021/jp809113h

    Article  CAS  Google Scholar 

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7. doi:10.1263/jbb.102.1

    Article  CAS  Google Scholar 

  • Liu SQ, Tang ZY (2010) Nanoparticle assemblies for biological and chemical sensing. J Mater Chem 20(1):24–35. doi:10.1039/b911328m

    Article  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie Int Edn 46(8):1222–1244. doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  • Luo XH, Chen YZ, Yue GH, Peng DL, Luo XT (2009) Preparation of hexagonal close-packed nickel nanoparticles via a thermal decomposition approach using nickel acetate tetrahydrate as a precursor. J Alloy Compd 476(1–2):864–868. doi:10.1016/j.jallcom.2008.09.117

    Article  CAS  Google Scholar 

  • Min YL, Xia HY, Chen YC, Zhang YG (2010) Ascorbic acid-assisted synthesis of hematite microstructures and magnetic properties. Colloid Surf Physicochem Eng Aspects 368(1–3):1–5. doi:10.1016/j.colsurfa.2010.05.039

    Article  CAS  Google Scholar 

  • Mourdikoudis S, Simeonidis K, Vilalta-Clemente A, Tuna F, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2009) Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. J Magn Magn Mater 321(18):2723–2728. doi:10.1016/j.jmmm.2009.03.076

    Article  CAS  Google Scholar 

  • Murray CB, Sun SH, Doyle H, Betley T (2001) Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bull 26(12):985–991

    CAS  Google Scholar 

  • Pachon LD, Thathagar MB, Hartl F, Rothenberg G (2006) Palladium-coated nickel nanoclusters: new Hiyama cross-coupling catalysts. Phys Chem Chem Phys 8(1):151–157. doi:10.1039/b513587g

    Article  Google Scholar 

  • Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17(4):429. doi:10.1002/adma.200400611

    Google Scholar 

  • Roca AG, Morales MP, Serna CJ (2006) Synthesis of monodispersed magnetite particles from different organometallic precursors. IEEE Trans Magn 42(10):3025–3029. doi:10.1109/tmag.2006.880111

    Article  Google Scholar 

  • Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez-Carreno T, Morales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42(22). doi:10.1088/0022-3727/42/22/224002

  • Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticies. J Am Chem Soc 124(28):8204–8205. doi:10.1021/ja026501x

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197

    Article  CAS  Google Scholar 

  • Vidal–Vidal J, Rivas J, Lopez-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloid Surf A Physicochem Eng Aspects 288(1–3):44–51. doi:10.1016/j.colsurfa.2006.04.027

    Article  Google Scholar 

  • Wang JP (2008) FePt magnetic nanoparticles and their assembly for future magnetic media. Proc IEEE 96(11):1847–1863. doi:10.1109/jproc.2008.2004318

    Article  CAS  Google Scholar 

  • Xu CJ, Sun SH (2007) Monodisperse magnetic nanoparticles for biomedical applications. Polym Int 56(7):821–826. doi:10.1002/pi.2251

    Article  CAS  Google Scholar 

  • Yang HT, Shen CM, Wang YG, Su YK, Yang TZ, Gao HJ (2004) Stable cobalt nanoparticles passivated with oleic acid and triphenylphosphine. Nanotechnology 15(1):70–74. doi:10.1088/0957-4484/15/1/014

    Article  CAS  Google Scholar 

  • Yang H, Ito F, Hasegawa D, Ogawa T, Takahashi M (2007a) Facile large-scale synthesis of monodisperse Fe nanoparticles by modest-temperature decomposition of iron carbonyl. J Appl Phys 101(9). doi:10.1063/1.2711391

  • Yang HT, Ito F, Hasegawa D, Ogawa T, Takahashi M (2007b) Facile large-scale synthesis of monodisperse Fe nanoparticles by modest-temperature decomposition of iron carbonyl. J Appl Phys 101(9). doi:10.1063/1.2711391

  • Yu WW, Falkner JC, Yavuz CT, Colvin VL (2004) Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun 20:2306–2307. doi:10.1039/b409601k

    Article  Google Scholar 

  • Zhang HT, Chen XH (2005) Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals. Nanotechnology 16(10):2288–2294. doi:10.1088/0957-4484/16/10/051

    Article  CAS  Google Scholar 

  • Zhu YH, Stubbs LP, Ho F, Liu RZ, Ship CP, Maguire JA, Hosmane NS (2010) Magnetic nanocomposites: a new perspective in catalysis. Chemcatchem 2(4):365–374. doi:10.1002/cctc.200900314

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from Science Foundation Ireland (Project: 06/IN.1/I98). This research was also enabled by the Higher Education Authority Program for Research in Third Level Institutions (2007–2011) via the INSPIRE programme. Microscopic analysis of the Ni samples was undertaken at the Electron Microscopy & Analysis Facility (EMAF) at Tyndall.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donegan, K.P., Godsell, J.F., Otway, D.J. et al. Size-tuneable synthesis of nickel nanoparticles. J Nanopart Res 14, 670 (2012). https://doi.org/10.1007/s11051-011-0670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0670-y

Keywords

Navigation