Crystal structure of iron-oxide nanoparticles synthesized from ferritin

Abstract

We have investigated the crystal structure of nanosized iron-oxide by X-ray diffraction (XRD), extended X-ray absorption fine structure measurements at the iron K-edge as well as by transmission electron microscopy (TEM). Iron-oxide nanoparticles were produced by thermal treatment of horse spleen ferritin molecules. The structure of these particles was compared to α-Fe2O3 and γ-Fe2O3 nanopowder references. The thermal treatment of a submonolayer film of ferritin molecules results in pure γ-Fe2O3 nanoparticles, while for films above a certain thickness α-Fe2O3 and γ-Fe2O3 coexist, exhibiting two different crystallite sizes. TEM shows a characteristic particle diameter of ~7 nm for γ-Fe2O3 resulting from thermal treatment of monolayers, consistent with the crystallite size of the γ-phase as obtained from XRD measurements on multi-layered samples. XRD shows the α-Fe2O3 phase to be characterized by a crystallite size of ~34 nm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    To produce nanosized iron oxide particles we made use of the ability of ferritin to self-assemble and construct a core, which shows a structure similar to that of the mineral ferrihydrite (5Fe2O3·9H2O). Ferritin is the major cellular iron-storage protein. It is able to store iron as hydrated iron oxide in the internal cavity which is composed of 24 polypeptide subunits. The inner and outer diameters of the protein shell are about 8 and 12.5 nm, respectively. Hydrophilic and hydrophobic channels penetrate the protein shell and provide the means by which iron ions can be accumulated within or removed from the molecules. (Cornell and Schwertmann 2003; Massover 1993; Mann et al. 1989).

References

  1. Banfield JF, Welch SA, Zhang H, Thomson Ebert T, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  CAS  Google Scholar 

  2. Barbier A, Belkhou R, Ohresser P, Gautier-Soyer M, Bezencenet O, Mulazzi M, Guittet M-J, Moussy J-B (2005) Electronic and crystalline structure, morphology, and magnetism of nanometric Fe2O3 layers deposited on Pt(111) by atomic-oxygen-assisted molecular beam epitaxy. Phys Rev B 72:245423

    Article  Google Scholar 

  3. Belin T, Millot N, Bovet N, Gailhanou M (2007) In situ and time resolved study of the γ/α-Fe2O3 transition in nanometric particles. J Sol State Chem 180:2377–2385

    Article  CAS  Google Scholar 

  4. Bermejo E, Becue T, Lacour C, Quarton M (1997) Synthesis of nanoscaled iron particles from freeze-dried precursors. Powder Technol 94:29–34

    Article  CAS  Google Scholar 

  5. Chirita M, Grozescu I (2009) Fe2O3—nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem Bull POLITEHNICA Univ. (Timişoara) 54:1–8

    Google Scholar 

  6. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurence and uses, 2nd edn. VCH, Weinheim

    Google Scholar 

  7. Fang C, Zhang M (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19:6258–6266

    Article  CAS  Google Scholar 

  8. Furuno T, Sasabe H, Ulmer KM (1989) Binding of ferritin molecules to a charged polypeptide layer of poly-1-benzyl-l-histidine. Thin Solid Films 180:23–30

    Article  CAS  Google Scholar 

  9. Jacob J, Khadar MA (2010) VSM and Mössbauer study of nanostructured hematite. J Magn Magn Mater 322:614–621

    Article  CAS  Google Scholar 

  10. Janzen C, Roth P, Rellinghaus B (1999) Characteristics of Fe2O3 nanoparticles from doped low-pressure H2/O2/Ar flames. J Nanopart Res 1:163–167

    Article  CAS  Google Scholar 

  11. Janzen C, Knipping J, Rellinghaus B, Roth P (2003) Formation of silica-embedded iron-oxide nanoparticles in low-pressure flames. J Nanopart Res 5:589–596

    Article  CAS  Google Scholar 

  12. Johnson CA, Yuan Y, Lenhoff AM (2000) Adsorbed layers of ferritin at solid and fluid interfaces studied by atomic force microscopy. J Colloid Interface Sci 223:261–272

    Article  CAS  Google Scholar 

  13. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B 43:151–162

    Article  CAS  Google Scholar 

  14. Mann S, Webb J, Williams RJP (1989) Biomineralization: chemical and biochemical perspectives. VCH, Weinheim

    Google Scholar 

  15. Massover WH (1993) Ultrastructure of ferritin and apoferritin: a review. Micron 24:389–437

    Article  CAS  Google Scholar 

  16. McHale JM, Auroux A, Perrotta AJ, Navrotsky A (1997) Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277:788–791

    Article  CAS  Google Scholar 

  17. Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319:1635–1638

    Article  CAS  Google Scholar 

  18. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Rad 8:322–324

    Article  CAS  Google Scholar 

  19. Newville M, Līviņš P, Yacoby Y, Rehr JJ, Stern EA (1993) Near-edge X-ray-absorption fine structure of Pb: a comparison of theory and experiment. Phys Rev B 47:14126–14131

    Article  CAS  Google Scholar 

  20. Nickels JE, Fineman MA, Wallace WE (1949) X-ray diffraction studies of sodium chloride–sodium bromide solid solutions. J Phys Chem 53:625–628

    Article  CAS  Google Scholar 

  21. Preisinger M, Krispin M, Rudolf T, Horn S, Strongin DR (2005) Electronic structure of nanoscale iron oxide particles measured by scanning tunneling and photoelectron spectroscopies. Phys Rev B 71:165409

    Article  Google Scholar 

  22. Rasmussen SE, Jørgensen JE, Lundtoft B (1996) Structures and Phase Transitions of Na2SO4. J Appl Cryst 29:42–47

    Article  CAS  Google Scholar 

  23. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 12:537–541

    Article  CAS  Google Scholar 

  24. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69

    Article  Google Scholar 

  25. Sadeghi M, Sarabadani P, Karami H (2010) Synthesis of maghemite nano-particles and its application as radionuclidic adsorbant to purify 109Cd radionuclide. J Radioanal Nucl Chem 283:297–303

    Article  CAS  Google Scholar 

  26. Sawada H (1996) An electron density residual study of α-ferric oxide. Mater Res Bull 31:141–146

    Article  CAS  Google Scholar 

  27. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten 2:98–100

    Google Scholar 

  28. Schimanke G, Martin M (2000) In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Solid State Ionics 136–137:1235–1240

    Article  Google Scholar 

  29. Schwertmann U, Fechter H (1984) The influence of aluminum on iron oxides: XI. Aluminum-substituted Maghemite in soils and its formation. Soil Sci Soc Am J 48:1462–1463

    Article  CAS  Google Scholar 

  30. Shmakov AN, Kryukova GN, Tsybulya SV, Chuvilin AL, Solovyeva LP (1995) Vacancy ordering in γ-Fe2O3: synchrotron X-ray powder diffraction and high-resolution electron microscopy studies. J Appl Cryst 28:141–145

    Article  CAS  Google Scholar 

  31. Stanjek H, Weidler PG (1992) The effect of dry heating on the chemistry, surface are and oxalate solubility of synthetic 2-line and 6-line ferrihydrites. Clay Minerals 27:397–412

    Article  CAS  Google Scholar 

  32. Stokes AR, Wilson AJC (1942) A method of calculating the integral breadths of Debye–Scherrer lines. Math Proc Camb Phil Soc 38:313–322

    Article  CAS  Google Scholar 

  33. Tamura H, Goto K, Nagayama M (1976) Effect of anions on the oxygenation of ferrous ion in neutral solutions. J Inorg Nucl Chem 38:113–117

    Article  CAS  Google Scholar 

  34. Tronc E, Jolivet JP (1986) Surface effects on magnetically coupled iron oxide “γ-Fe2O3” colloids. Hyperfine Interact 28:525–528

    Article  CAS  Google Scholar 

  35. Ye X, Lin D, Jiao Z, Zhang L (1998) The thermal stability of nanocrystalline maghemite Fe2O3. J Phys D Appl Phys 31:2739–2744

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the ANKA Angstroemquelle Karlsruhe for the provision of beamtime and we would like to thank S. Mangold and S. Doyle for their valuable assistance using beamline ANKA-XAS and ANKA-PDIFF. We thank M. Klemm and P.S. Riseborough for fruitful discussion. This work was supported by the Deutsche Forschungsgemeinschaft in context of SFB 484 and PROALMEX Mexico-Germany binational collaboration project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Krispin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krispin, M., Ullrich, A. & Horn, S. Crystal structure of iron-oxide nanoparticles synthesized from ferritin. J Nanopart Res 14, 669 (2012). https://doi.org/10.1007/s11051-011-0669-4

Download citation

Keywords

  • Iron-oxide nanoparticles
  • Crystal structure
  • Ferritin
  • X-ray diffraction
  • Transmission electron microscopy
  • Extended X-ray absorption fine structure