Skip to main content
Log in

Synthesis of worm-shaped carbon nanofibers over a sodium chloride support

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Worm-shaped carbon nanofibers (WCNFs) were synthesized in bulk by chemical vapour deposition at 680 °C using iron carboxylate as catalyst precursors and sodium chloride as catalyst support. The products were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction method. The purity of the purified products was determined by thermal analysis. The WCNF yield was 6700% relative to catalyst. The simplicity, environmental friendliness and use of easily available low-cost precursors are the advantage of this synthesis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bahome MC, Jewell LL, Padayachy K, Hildebrandt D, Glasser D, Datye AK, Coville NJ (2005) Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A 287:60–67

    Article  CAS  Google Scholar 

  • Brataas A (2008) Nanoelectronics: spin surprise in carbon. Nature 452:419–420

    Article  CAS  Google Scholar 

  • Chen XQ, Zhang SL, Dikin DA, Ding WQ, Ruoff RS, Pan LJ (2003) Mechanics of carbon nanocoils. Nano Lett 3:1299–1304

    Article  CAS  Google Scholar 

  • Cheng J, Zou X, Zhang H, Li F, Ren P, Zhu G, Su Y, Wang M (2008) Growth of Y-shaped carbon nanofibers from ethanol flames. Nanoscale Res Lett 3:295–298

    Article  CAS  Google Scholar 

  • Demicheva OV, Meshkov GB, Sinitsyna OV, Tomishko AG, Yaminsky IV (2008) Multiwall carbon nanotube tips for scanning probe microscopy. Nanotechnol Russ 3:704–709

    Article  Google Scholar 

  • Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  CAS  Google Scholar 

  • Douglas RK, Alexander S (2010) Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 135:2790–2797

    Article  Google Scholar 

  • Edwards AB, Garner CD, Roberts KJ (1997) In situ QXAFS study of the pyrolytic decomposition of nickel formate dihydrate. J Phys Chem B 101:20–26

    Article  CAS  Google Scholar 

  • Furuya Y, Hashishin T, Iwanaga H, Motojima S, Hishikawa Y (2004) Interaction of hydrogen with carbon coils at low temperature. Carbon 42:331–335

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic. Carbon 354:56–58

    CAS  Google Scholar 

  • Jan E, Hendricks JL, Husaini L, Burns SMR, Sereno A, Martin DC, Kotov NA (2009) Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. Nano Lett 9:4012–4018

    Article  CAS  Google Scholar 

  • Jesus JCD, Gonzalez I, Quevedo A, Puerta T (2005) Thermal decomposition of nickel acetate tetrahydrate: an integrated study by TGA, QMS and XPS techniques. J Mol Catal A: Chem 288:283–291

    Article  Google Scholar 

  • Kathyayini H, Reddy KV, Nagy JB, Nagaraju N (2008) Synthesis of carbon nanotubes over transition metal ions supported on Al(OH)3. Indian J Chem (Sec B) 47A:663

    CAS  Google Scholar 

  • Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Gangloff L, Schnell JP, Semet V, Thien VB, Groening O (2004) Carbon nanotubes as field emission sources. J Mater Chem 14:933–943

    Article  CAS  Google Scholar 

  • Panchakarla LS, Govindaraj A (2007) Carbon nanostructures and graphite-coated metal nanostructures obtained by pyrolysis of ruthenocene and ruthenocene–ferrocene mixtures. Bull Mater Sci 30:23

    Article  CAS  Google Scholar 

  • Qi X, Qin C, Zhong W, Au C, Ye X, Du Y (2010a) Large-scale synthesis of carbon NanoMaterials by catalytic chemical vapor deposition: a review of the effects of synthesis parameters and magnetic properties. Materials 3:4142–4174

    Article  CAS  Google Scholar 

  • Qi X, Zhong W, Deng Y, Au C, Du Y (2010b) Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450 °C and their magnetic properties. Carbon 48:365–376

    Article  CAS  Google Scholar 

  • Schwarz JA, Contescu C, Contescu A (1995) Methods for preparation of catalytic materials. Chem Rev 95:477–510

    Article  CAS  Google Scholar 

  • Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy JB, Haesendonck CV (2004) Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett 4:1775–1779

    Article  CAS  Google Scholar 

  • Wang Y, Shi Z, Yin J (2010) Unzipped multiwalled carbon nanotubes for mechanical reinforcement of polymer composites. J Phys Chem C 114:19621

    Article  CAS  Google Scholar 

  • Yoshimura K, Nakano K, Miyake T, Hishikawa Y, Motojima S (2006) Effectiveness of carbon microcoils as a reinforcing material for a polymer matrix. Carbon 44:2833–2838

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Defense Research and Development Organization (DRDO), Government of India for financial assistance and also to SAIF, IITB and central instrumental facilities, CECRI for providing analytical services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badekai Ramachandra Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravindra, R., Bhat, B.R. Synthesis of worm-shaped carbon nanofibers over a sodium chloride support. J Nanopart Res 14, 656 (2012). https://doi.org/10.1007/s11051-011-0656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0656-9

Keywords

Navigation