Skip to main content
Log in

Stable gold nanoparticles obtained in pure acetone by laser ablation with different wavelengths

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We prepared gold nanoparticles (NPs) by ps laser ablation in pure acetone and water with 532 and 1,064 nm wavelengths. The NPs obtained in pure acetone are stable for years and, depending on the fabrication conditions, they can be very small, quasi monodisperse and fluorescent. These properties are not lost when they are transferred from acetone to water. Post-irradiation tests of the colloids with 532 nm pulses, before and after phase transfer to water, and surface enhanced Raman spectroscopy (SERS), either on liquid and on dried samples, suggest that the stabilization mechanism in acetone is related to the light-induced formation on the gold surface of enolate which, in some cases, can undergo degradation with formation of amorphous carbon. Micro-SERS tests were also used to demonstrate that functionalization of the particles with 1,10-phenanthroline or adenine is possible after transfer to the water phase, which opens the way to the use of such structures for biological and medical applications, such as biocompatible fluorescent or Raman markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alloisio M, Demartini A, Cuniberti C, Dellepiane G, Jadhav S, Thea S, Giorgetti E, Gellini C, Muniz-Miranda M (2009) Polydiacetylene-functionalized noble metal nanocages. J Phys Chem C 113:19475–19481. doi:10.1021/jp905787h

    Article  Google Scholar 

  • Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821. doi:10.1039/B900654K

    Article  CAS  Google Scholar 

  • Amendola V, Rizzi G, Polizzi S, Meneghetti M (2005) Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption. J Phys Chem B 109:23125–23128. doi:10.1021/jp055783v

    Article  CAS  Google Scholar 

  • Andrade GFS, Temperini MLA (2007) 1,10-Phenanthroline adsorption on iron electrode monitored by surface-enhanced raman scattering (SERS). Comparison to SERS of Phen and its transition metal complex on silver electrode. J Phys Chem C 111:13821–13830. doi:10.1021/jp072383u

    Article  CAS  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782. doi:10.1039/b806051g

    Article  CAS  Google Scholar 

  • Boyer P, Ménard D, Meunier M (2010) Nanoclustered Co–Au particles fabricated by femtosecond laser fragmentation in liquids. J Phys Chem C 114:13497–13500. doi:10.1021/jp1037552

    CAS  Google Scholar 

  • Bozon-Verduraz F, Brayner R, Voronov VV, Kirichenko NA, Simakin AV, Shafeev GA (2003) Production of nanoparticles by laser-induced ablation of metals in liquids. Quantum Electron 33:714–720. doi:10.1070/QE2003v033n08ABEH002484

    Article  CAS  Google Scholar 

  • Burakov VS, Tarasenko NV, Butsen AV, Rozantsev VA, Nedel’ko NI (2005) Formation of nanoparticles during double-pulse laser ablation of metals in liquids. Eur Phys J Appl Phys 30:107–112. doi:10.1051/epjap:2005016

    Article  CAS  Google Scholar 

  • Busca G, Lorenzelli V (1982) Infrared study of the reactivity of acetone and hexachloroacetone adsorbed on haematite. J Chem Soc Faraday Trans I 78:2911–2919. doi:10.1039/F19827802911

    Article  CAS  Google Scholar 

  • Chen S, Wang ZL, Ballato J, Foulger SH, Carroll DL (2003) Rotational isomerism in acetic acid: the first experimental observation of the high-energy conformer. J Am Chem Soc 125:16186–16187. doi:10.1021/ja038341a

    Article  CAS  Google Scholar 

  • Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li Z, Au L, Zhang H, Kimmey MB, Xia Y (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477. doi:10.1021/nl047950t

    Article  CAS  Google Scholar 

  • Damm CJ, Lucas D, Sawyer RF, Koshland CP (2001) Real-time measurement of combustion generated particles with photofragmentation-fluorescence. Appl Spectrosc 55:1478–1482. doi:10.1366/0003702011953892

    Article  CAS  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081. doi:10.1126/Science.277.5329.1078

    Article  CAS  Google Scholar 

  • Giammanco F, Giorgetti E, Marsili P, Giusti A (2010) Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation. J Phys Chem C 114:3354–3363. doi:10.1021/jp908964t

    Article  CAS  Google Scholar 

  • Giorgetti E, Giusti A, Giammanco F, Marsili P, Laza S (2009) Dendrimer-capped nanoparticles prepared by picosecond laser ablation in liquid environment. Molecules 14:3731–3753. doi:10.3390/molecules14093731

    Article  CAS  Google Scholar 

  • Giorgetti E, Giammanco F, Marsili P, Giusti A (2011) Effect of picosecond postirradiation on colloidal suspensions of differently capped AuNPs. J Phys Chem C 115:5011–5020. doi:10.1021/jp108042m

    Article  CAS  Google Scholar 

  • Giusti A, Giorgetti E, Laza S, Marsili P, Giammanco F (2007) Multiphoton fragmentation of PAMAM G5-capped gold nanoparticles induced by picosecond laser irradiation at 532 nm. J Phys Chem C 111:14984–14991. doi:10.1021/jp072611k

    Article  CAS  Google Scholar 

  • Hanson BE, Wieserman LF, Wagner GW, Kaufman RA (1987) Identification of acetone enolate on γ-alumina: implications for the oligomerization and polymerization of adsorbed acetone. Langmuir 3:549–555. doi:10.1021/la00076a019

    Article  Google Scholar 

  • Hartwig F, Bergman RG, Anderson RA (1991) Oxygen- and carbon-bound ruthenium enolates: migratory insertion, reductive elimination, beta-hydrogen elimination, and cyclometalation reactions. Organometallics 10:3326–3344. doi:10.1021/om00055a060

    Article  CAS  Google Scholar 

  • Hu A, Sanderson J, Zhou Y, Duley WW (2009) Formation of diamond-like carbon by fs laser irradiation of organic liquids. Diam Relat Mater 18:999–1001. doi:10.1016/j.diamond.2009.02.019

    Article  CAS  Google Scholar 

  • Jain PK, Lee KS, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. doi:10.1021/jp057170o

    Article  CAS  Google Scholar 

  • Jain PK, Yeo BS, Syadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472:1–13. doi:10.1016/j.cplett.2009.02.023

    Article  Google Scholar 

  • Jeffery EL, Mann RK, Hutchings GJ, Taylor SH, Willock DJ (2005) A density functional theory study of the adsorption of acetone to the (1 1 1) surface of Pt: implications for hydrogenation catalysis. Catal Today 105:85–92. doi:10.1016/j.cattod.2005.04.013

    Article  CAS  Google Scholar 

  • Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128. doi:10.1021/jp980009b

    Article  CAS  Google Scholar 

  • Kawasaki M, Nishimura N (2006) 1064-nm laser of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Appl Surf Sci 253:2208–2216. doi:10.1016/j.apsusc.2006.04.024

    Article  CAS  Google Scholar 

  • Kazakevich PV, Simakin AV, Voronov VV, Shafeev GA (2006) Laser induced synthesis of nanoparticles in liquids. Appl Surf Sci 252:4373–4380. doi:10.1016/j.apsusc.2005.06.059

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin

    Google Scholar 

  • Kumar A, Vemula P, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241. doi:10.1038/nmat2099

    Article  CAS  Google Scholar 

  • Kundu JO, Neumann O, Janesko BG, Zhang D, Lal S, Barhoumi A, Scuseria GE, Halas NJ (2009) Adenine and adenosine monophosphate (AMP) gold binding interactions studied by surface-enhanced raman and infrared spectroscopies. J Phys Chem C 113:14390–14397. doi:10.1021/jp903126f

    Article  CAS  Google Scholar 

  • Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711. doi:10.1021/nl050127s

    Article  CAS  Google Scholar 

  • Lormes W, Hundhausen M, Ley L (1998) Time resolved photoluminescence of amorphous hydrogenated carbon. J Noncryst Solids 227–230:570–573. doi:10.1016/S0022-3093(98)00272-5

    Article  Google Scholar 

  • Mafunè F, Khono J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120. doi:10.1021/jp0037091

    Article  Google Scholar 

  • Mafune’ F, Kohno J, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J Phys Chem B 106:7575–7577. doi:10.1021/jp020577y

    Article  Google Scholar 

  • Miyata H, Toda Y, Kubokawa Y (1974) Infrared studies of adsorption of acetone on MgO and NiO. J Catal 32:155–158. doi:10.1016/0021-9517(74)90170-5

    Article  CAS  Google Scholar 

  • Muniz-Miranda M (2000) Surface enhanced raman scattering and normal coordinate analysis of 1,10-phenanthroline adsorbed on silver sols. J Phys Chem A 104:7803–7810. doi:10.1021/jp001578y

    Article  CAS  Google Scholar 

  • Muniz-Miranda M, Pergolese B, Bigotto A (2010) SERS and DFT investigation on the adsorption of 1,10-phenanthroline on transition metal surfaces. Phys Chem Chem Phys 12:1145–1151. doi:10.1039/B913014D

    Article  CAS  Google Scholar 

  • Muniz-Miranda M, Gellini C, Giorgetti E (2011) Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J Phys Chem C 115:5021–5027. doi:10.1021/jp1086027

    Article  CAS  Google Scholar 

  • Nam J, Stoeva SI, Mitkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126:5932–5933. doi:10.121/ja049384

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378. doi:10.1021/jp026770+

    Article  CAS  Google Scholar 

  • Peng Y, Niu Z, Huang W, Chen S, Li Z (2005) Surface-enhanced Raman scattering studies of 1,10-phenanthroline adsorption and its surface complexes on a gold electrode. J Phys Chem B 109:10880–10885. doi:10.1021/jp0443198

    Article  CAS  Google Scholar 

  • Perevedentseva E, Karmenyan A, Chung PH, He YT, Cheng CL (2006) Surface enhanced Raman spectroscopy of carbon nanostructures. Surf Sci 600:3723–3728. doi:10.1016/j.susc.2006.01.074

    Article  CAS  Google Scholar 

  • Rholfing EA (1988) Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source. J Chem Phys 89:6103–6112. doi:10.1063/1.455426

    Article  Google Scholar 

  • Rusciano G, De Luca AC, D’Alessio A, Minatolo P, Pesce G, Sasso A (2008) Surface-enhanced Raman scattering study of nano-sized organic carbon particles produced in combustion processes. Carbon 46:335–341. doi:10.1016/j.carbon.2007.11.052

    Article  CAS  Google Scholar 

  • Sarkar S, Pradhan M, Sinha AK, Basu M, Pal T (2010) Chelate effect in surface enhanced Raman scattering with transition metal nanoparticles. J Phys Chem Lett 1:439–444. doi:10.1021/jz900272u

    Article  CAS  Google Scholar 

  • Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with O h symmetry: from octahedra to cubes. J Am Chem Soc 128:14863–14870. doi:10.1021/ja062892u

    Article  CAS  Google Scholar 

  • Silvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108(16864):16869. doi:10.1021/jp047134+

    Google Scholar 

  • Sim WS, Li TC, Yang PX, Yeo BS (2002) Isolation and identification of surface-bound acetone enolate on Ni(111). J Am Chem Soc 124:4970–4971. doi:10.1021/ja025749j

    Article  CAS  Google Scholar 

  • Tarasenko NV, Butsen AV, Nevar EA (2005) Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids. Appl Surf Sci 247:418–422. doi:10.1016/j.apsusc.2005.01.093

    Article  CAS  Google Scholar 

  • Tilaki RM, Irajizad A, Mahdavi SM (2006) Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation. Appl Phys A 84:251–255. doi:10.1007/s00339-006-3618-9

    Article  Google Scholar 

  • Tran ML, Zvyagin AV, Plakhotnik T (2006) Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. Chem Commun 22:2400–2401. doi:10.1039/B602079H

    Article  Google Scholar 

  • Trigari S, Rindi A, Margheri G, Sottini S, Dellepiane G, Giorgetti E (2011) Synthesis and modelling of gold nanostars with tunable morphology and extinction spectrum. J Mater Chem 21:6531–6540. doi:10.1039/C0JM04519E

    Article  CAS  Google Scholar 

  • Vannice MA, Erley W, Ibach H (1991) A RAIRS and HREELS study of acetone on Pt(111). Surf Sci 254:1–3. doi:10.1016/0039-6028(91)90632-3

    Article  CAS  Google Scholar 

  • Veres M, Füle M, Tóth S, Koós M, Pócsik I (2004) Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam Relat Mater 13:1412–1415. doi:10.1016/j.diamond.2004.01.041

    Article  CAS  Google Scholar 

  • Vicente J, Abad JA, Chicote MT, Abrisqueta MD, Lorca JA, de Arellano MCR (1998) Synthesis of new ketonyl palladium(II) and platinum(ii) complexes with nitrogen-donor ligands. Crystal structure of [Pt{CH2C(O)Me}2(bpy)]. Organometallics 17:1564–1568. doi:10.1021/om971028v

    Article  CAS  Google Scholar 

  • Werner D, Hashimoto S, Tomita T, Matsuo S, Makita Y (2008) In situ spectroscopic measurements of laser ablation-induced splitting and agglomeration of metal nanoparticles in solution. J Phys Chem C 112:16801–16808. doi:10.1021/jp804647a

    Article  CAS  Google Scholar 

  • Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelly DF (1998) Photoluminescence from nanosize gold clusters. J Chem Phys 108:9137–9143. doi:10.1063/1.476360

    Article  CAS  Google Scholar 

  • Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2000) Surface chemistry of acetone on metal oxides: IR observation of acetone adsorption and consequent surface reactions on silica–alumina versus silica and alumina. Langmuir 16:430–436. doi:10.1021/la990739q

    Article  CAS  Google Scholar 

  • Zawada K, Bukowska J (2000) An interaction of 1,10-phenantroline with the copper electrode in neutral and acidic aqueous solutions: a surface enhanced Raman scattering study. J Mol Struct 555:425–432. doi:10.1016/S0022-2860(00)00629-3

    Article  CAS  Google Scholar 

  • Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125:7780–7781. doi:10.1021/ja035473v

    Article  CAS  Google Scholar 

  • Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:77402. doi:10.1103/PhysRevLett.93.077402

    Google Scholar 

Download references

Acknowledgments

Funding from the project NABLA (Decree n.4508—September 1, 2010 by Regione Toscana, Italy, PAR FAS 2007–2013 funds, Action 1.1.a.3) and project PRIN2009 Novel plasmon-based processes and materials for sensor applications of the Italian Ministry of Research is acknowledged. The authors also wish to thank Gabriella Caminati (Chemistry Department of the University of Firenze, Italy) and Alessio Rindi (Department of Chemistry and Industrial Chemistry of the University of Genova, Italy) for technical assistance with ζ-potential and TEM characterizations, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Giorgetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgetti, E., Muniz-Miranda, M., Marsili, P. et al. Stable gold nanoparticles obtained in pure acetone by laser ablation with different wavelengths. J Nanopart Res 14, 648 (2012). https://doi.org/10.1007/s11051-011-0648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0648-9

Keywords

Navigation