Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6813–6820 | Cite as

Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays

Research Paper

Abstract

Self-organized anodic TiO2 nanotube arrays were sensitized with polyaniline by a simple electrodeposite method. The morphological and structural properties studied by scanning electron microscopy and fourier transform infrared spectroscopy reveal the successful deposition of polyaniline on the nanotube arrays. The polyaniline-sensitized TiO2 nanotube arrays exhibit a distinguishable red shift on the absorption spectrum. Electrochemical impedance investigation attested to a significant improvement of the interfacial electron-transfer kinetics for promoted electron–hole effective separation. The as-prepared samples showed a high efficiency for the photoelectrocatalytic degradation of rhodamine B under visible-light irradiation (λ > 400 nm). The enhanced photoelectrocatalytic activity could be attributed to the extended absorption in the visible-light region by the polyaniline and the effective separation of photogenerated carriers driven by the photoinduced potential difference generated at the polyaniline/TiO2 nanotube arrays interface.

Keywords

TiO2 nanotube arrays Polyaniline Electrodeposition Rhodamine B Photoelectrocatalysis 

References

  1. Ameen S, Akhtar MS, Kim GS, Kim YS, Yang OB, Shin HS (2009) Plasma-enhanced polymerized aniline/TiO2 dye-sensitized solar cells. J Alloys Compds 487:382–386CrossRefGoogle Scholar
  2. Ashis D et al (2004) Characterization and dielectric properties of polyaniline-TiO2 nanocomposites. Nanotechnology 15:1277CrossRefGoogle Scholar
  3. Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784–6791CrossRefGoogle Scholar
  4. Bwana N (2009) Comparison of the performances of dye-sensitized solar cells based on different TiO2 electrode nanostructures. J Nanopart Res 11:1917–1923CrossRefGoogle Scholar
  5. Chen D, Li J (2010) Interfacial functionalization of TiO2 with smart polymers: pH-controlled switching of photocurrent direction. J Phys Chem C 114:10478–10483CrossRefGoogle Scholar
  6. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  7. Costa LL, Prado AGS (2009) TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. J Photochem Photobiol A 201:45–49CrossRefGoogle Scholar
  8. Hou Y, Li X, Zhao Q, Quan X, Chen G (2010) Electrochemically assisted photocatalytic degradation of 4-chlorophenol by Znfe2o4-Modified TiO2 nanotube array electrode under visible light irradiation. Environ Sci Technol 44:5098–5103CrossRefGoogle Scholar
  9. Janus M, Morawski AW (2007) New method of improving photocatalytic activity of commercial degussa P25 for azo dyes decomposition. Appl Catal B 75:118–123CrossRefGoogle Scholar
  10. Karim MR, Lee HW, Cheong IW, Park SM, Oh W, Yeum JH (2010) Conducting polyaniline-titanium dioxide nanocomposites prepared by inverted emulsion polymerization. Polym Compos 31:83–88Google Scholar
  11. Li XZ, Li FB (2001) Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35:2381–2387CrossRefGoogle Scholar
  12. Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H (2006) Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer 47:7361–7367CrossRefGoogle Scholar
  13. Li X, Wang D, Cheng G, Luo Q, An J, Wang Y (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B 81:267–273CrossRefGoogle Scholar
  14. Li Q, Xiao C, Li W, Zhang H, Chen F, Fang P, Pan M (2010) Enhanced proton conductivity of polymer electrolyte membrane doped with titanate nanotubes. Colloid Polym Sci 288:1369–1374CrossRefGoogle Scholar
  15. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  16. Liu Y, Liu R, Liu C, Luo S, Yang L, Sui F, Teng Y, Yang R, Cai Q (2010) Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film. J Hazard Mater 182:912–918CrossRefGoogle Scholar
  17. Otsuka Y, Okamoto Y, Akiyama HY, Umekita K, Tachibana Y, Kuwabata S (2008) Photoinduced formation of polythiophene/TiO2 nanohybrid heterojunction films for solar cell applications. J Phys Chem C 112:4767–4775CrossRefGoogle Scholar
  18. Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, Yoriya S, LaTempa TJ, Grimes CA (2010) Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 12:2780–2800CrossRefGoogle Scholar
  19. Salem MA, Al-Ghonemiy AF, Zaki AB (2009) Photocatalytic degradation of allura red and quinoline yellow with polyaniline/TiO2 nanocomposite. Appl Catal B 91:59–66CrossRefGoogle Scholar
  20. Sathiyanarayanan S, Azim SS, Venkatachari G (2007) A new corrosion protection coating with polyaniline-TiO2 composite for steel. Electrochim Acta 52:2068–2074CrossRefGoogle Scholar
  21. Shang M, Wang W, Sun S, Ren J, Zhou L, Zhang L (2009) Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4. J Phys Chem C 113:20228–20233CrossRefGoogle Scholar
  22. Shi L, Wang X, Lu L, Yang X, Wu X (2009) Preparation of TiO2/polyaniline nanocomposite from a lyotropic liquid crystalline solution. Synth Met 159:2525–2529CrossRefGoogle Scholar
  23. Shrestha NK, Yang M, Nah Y-C, Paramasivam I, Schmuki P (2010) Self-organized TiO2 nanotubes: visible light activation by Ni oxide nanoparticle decoration. Electrochem Commun 12:254–257CrossRefGoogle Scholar
  24. Yang L, Luo S, Liu R, Cai Q, Xiao Y, Liu S, Su F, Wen L (2010) Fabrication of CdSe nanoparticles sensitized long TiO2 nanotube arrays for photocatalytic degradation of anthracene-9-carbonxylic acid under green monochromatic light. J Phys Chem C 114:4783–4789CrossRefGoogle Scholar
  25. Zarei M, Khataee AR, Ordikhani-Seyedlar R, Fathinia M (2010) Photoelectro-fenton combined with photocatalytic process for degradation of an azo dye using supported TiO2 nanoparticles and carbon nanotube cathode: neural network modeling. Electrochim Acta 55:7259–7265CrossRefGoogle Scholar
  26. Zhang H, Zong RL, Zhao JC, Zhu YF (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42:3803–3807CrossRefGoogle Scholar
  27. Zhang H, Chen D, Lv X, Wang Y, Chang H, Li J (2009a) Energy-efficient photodegradation of azo dyes with TiO2 nanoparticles based on photoisomerization and alternate UV–Visible light. Environ Sci Technol 44:1107–1111CrossRefGoogle Scholar
  28. Zhang J, Bang JH, Tang C, Kamat PV (2009b) Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4:387–395CrossRefGoogle Scholar
  29. Zou J, Zhang Q, Huang K, Marzari N (2010) Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J Phys Chem C 114:10725–10729CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xinyong Li
    • 1
    • 2
  • Wei Teng
    • 1
  • Qidong Zhao
    • 1
    • 2
  • Lianzhou Wang
    • 2
  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and TechnologyDalian University of TechnologyDalianChina
  2. 2.ARC Centre of Excellence for Functional Nanomaterials, School of Chemical EngineeringThe University of QueenslandSt Lucia, BrisbaneAustralia

Personalised recommendations