Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6545–6553 | Cite as

Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy

  • A. C. H. Barreto
  • V. R. Santiago
  • S. E. Mazzetto
  • J. C. Denardin
  • R. Lavín
  • Giuseppe Mele
  • M. E. N. P. Ribeiro
  • Icaro G. P. Vieira
  • Tamara Gonçalves
  • N. M. P. S. Ricardo
  • P. B. A. Fechine
Research Paper

Abstract

Quercetin belongs to the chemical class of flavonoids and can be found in many common foods, such as apples, nuts, berries, etc. It has been demonstrated that quercetin has a wide array of biological effects that are considered beneficial to health treatment, mainly as anticancer. However, therapeutic applications of quercetin have been restricted to oral administration due to its sparing solubility in water and instability in physiological medium. A drug delivery methodology was proposed in this work to study a new quercetin release system in the form of magnetite–quercetin–copolymer (MQC). These materials were characterized through XRD, TEM, IR, and Thermal analysis. In addition, the magnetization curves and quercetin releasing experiments were performed. It was observed a nanoparticle average diameter of 11.5 and 32.5 nm at Fe3O4 and MQC, respectively. The presence of magnetic nanoparticles in this system offers the promise of targeting specific organs within the body. These results indicate the great potential for future applications of the MQC to be used as a new quercetin release system.

Keywords

Drug delivery Quercetin Magnetic nanoparticles Copolymer Nanomedicine 

Notes

Acknowledgments

The authors thank Dr. Zhuo Yang for the preparation and characterization of copolymer E137S18E137. The study was supported by CAPES, Funcap and CNPq (Brazilian agencies). Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia CEDENNA), Millennium Science Nucleus Basic and Applied Magnetism (P06-022F) and Fondecyt 1080164 and 3100117.

References

  1. Alexiou C et al (2006) Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur Biophys J 35:446–450CrossRefGoogle Scholar
  2. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23–30Google Scholar
  3. Braga TP, Vasconcelos IF, Sasaki JM, Fabris JD, Oliveira DQL, Valentini A (2010) Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides. J Magn Magn Mater 322:633–637CrossRefGoogle Scholar
  4. Bukhari SB, Memon S, Tahir MM, Bhanger MI (2008) Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex. J Mol Struct 892:39–46CrossRefGoogle Scholar
  5. Cao H, He J, Deng L, Gao X (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core-shell nanoparticles via layer-by-layer method. Appl Surf Sci 255:7974–7980CrossRefGoogle Scholar
  6. Cheng K, Peng S, Xu C, Sun S (2009) Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131:10637–10644CrossRefGoogle Scholar
  7. Chinnasamy CN et al (2001) Mixed spinel structure in nanocrystalline NiFe2O4. Phys Rev B 63:184108CrossRefGoogle Scholar
  8. Costa EM, Filho JMB, Nascimento TG, Macedo RO (2002) Thermal characterization of the quercetin and rutin flavonoids. Thermochim Acta 392–393:79–84CrossRefGoogle Scholar
  9. Doraiswamy PM, Finefrock AE (2004) Metals in our minds: therapeutic implications for neurodegenerative disorders. Lancet Neurol 3:431–434CrossRefGoogle Scholar
  10. Gallo JM, Varkonyi P, Hassan EE, Groothius DR (1993) Targeting anticancer drugs to the brain: II. physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats. J Pharm Biopharm 21:575–592CrossRefGoogle Scholar
  11. Giri J et al (2008) Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications. J Magn Magn Mater 320:724–730CrossRefGoogle Scholar
  12. Gupta AK, Curtis ASG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15:493–496CrossRefGoogle Scholar
  13. Hrdina A, Lai E, Li C, Sadi B, Kramer G (2010) A comparative study of magnetic transferability of superparamagnetic nanoparticles. J Magn Magn Mater 322:2622–2627CrossRefGoogle Scholar
  14. Hu FX, Neoh KG, Kang ET (2006) Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 27:5725–5733CrossRefGoogle Scholar
  15. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B 80:184–192CrossRefGoogle Scholar
  16. Laurent S et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  17. Makris DP, Rossiter JT (2000) Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (quercetin 3-o-rhamnosylglucoside) in aqueous model systems. J Agric Food Chem 48:3830–3838CrossRefGoogle Scholar
  18. Pinho MEN, Costa FMLL, Filho FBS, Ricardo NMPS, Yeates SG, Attwood D, Booth C (2007) Mixtures of triblock copolymers E62P39E62 and E137S18E137 potencial for drug delivery from in situ gelling micellar formulations. Int J Pharm 328:95–98CrossRefGoogle Scholar
  19. Rao BP, Rao GSN, Kumar AM, Rao KH, Murthy YLN, Hong SM, Kim CO, Kim C (2007) Soft chemical synthesis and characterization of Ni0.65Zn0.35Fe2O4 nanoparticles. J Appl Phys 101:123902-1–123902-4Google Scholar
  20. Ribeiro MENP, Vieira IGP, Cavalcante IM, Ricardo NMPS, Attowood D, Yeates SG, Booth C (2009) Solubilisation of griseofulvin, quercetin and rutin in micellar formulations of triblock copolymers E62P39E62 and E137S18E137. Int J Pharm 378:211–214CrossRefGoogle Scholar
  21. Rohn S, Buchner N, Driemel G, Rauser M, Kroh LW (2007) Thermal degradation of onion quercetin glucosides under roasting conditions. J Agric Food Chem 55:1568–1573CrossRefGoogle Scholar
  22. Shubayev VI, Pisanic TR II, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477CrossRefGoogle Scholar
  23. Slavov L et al (2010) Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J Magn Magn Mater 322:1904–1911CrossRefGoogle Scholar
  24. Wang Z, Shen B, Aihua Z, He N (2005) Synthesis of Pd/Fe3O4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chem Eng J 113:27–34CrossRefGoogle Scholar
  25. Wang Y et al (2008) Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging. Adv Funct Mater 18:308–318CrossRefGoogle Scholar
  26. Wei X, Gong C, Gou M, Fu S, Guo Q, Shi S, Luo F, Qiu L, Qian Z (2009) Biodegradable poly (ε-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 381:1–18CrossRefGoogle Scholar
  27. Yang Z, Crothers M, Ricardo NMPS, Chaibundit C, Taboada P, Mosquera V, Kelarakis A, Havredaki V, Martin L, Valder C, Collett JH, Attwood D, Heatley F, Booth C (2003) Micellisation and gelation of triblock copolymers of ethylene oxide and styrene oxide in aqueous solution. Langmuir 19:943–950CrossRefGoogle Scholar
  28. Zhao DL, Zeng XW, Xia QS, Tang JT (2009) Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia. J Alloys Compd 469:215–218CrossRefGoogle Scholar
  29. Zheng Y, Haworth IS, Zuo Z, Chow MSS, Chow AHL (2005) Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes. J Pharm Sci 94:1079–1089CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. C. H. Barreto
    • 1
    • 2
  • V. R. Santiago
    • 1
    • 2
  • S. E. Mazzetto
    • 2
  • J. C. Denardin
    • 3
  • R. Lavín
    • 3
    • 4
  • Giuseppe Mele
    • 5
  • M. E. N. P. Ribeiro
    • 6
  • Icaro G. P. Vieira
    • 7
  • Tamara Gonçalves
    • 8
  • N. M. P. S. Ricardo
    • 6
  • P. B. A. Fechine
    • 1
  1. 1.Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará – UFCFortalezaBrazil
  2. 2.Laboratório de Produtos e Tecnologia em Processos—LPT, Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de FísicaUniversidad de Santiago de Chile, USACHSantiagoChile
  4. 4.Facultad de IngenieríaUniversidad Diego PortalesSantiagoChile
  5. 5.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoVia ArnesanoItaly
  6. 6.Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil
  7. 7.Parque de Desenvolvimento Tecnológico (PADETEC)FortalezaBrazil
  8. 8.Departamento de FarmáciaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations