Skip to main content
Log in

New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

By encapsulating zirconium phosphate (ZrP) nanoparticles into three macroporous polystyrene resins with various surface groups, i.e., −CH2Cl, −SO3 , and −CH2N+(CH3)3 three nanocomposite adsorbents (denoted as ZrP–Cl, ZrP–S, and ZrP–N) were fabricated, respectively for lead removal from water. Effect of the functional groups on nano-ZrP dispersion and effect of ZrP immobilization on the mechanical strength of the resulting nanocomposites were investigated. The presence of the charged functional groups (−SO3 and −CH2N+(CH3)3) are more favorable than the neutral −CH2Cl group to improve nano-ZrP dispersion (i.e., to achieve smaller ZrP nanoparticles). ZrP–N and ZrP–S had higher capacity than ZrP–Cl for lead removal. As compared to ZrP–N, ZrP–S exhibits higher preference toward lead ion at high calcium levels as a result of the potential Donnan membrane effect. On the other hand, nano-ZrP immobilization would simultaneously reinforce both the compressive strength and the wear performance of the resulting nanocomposites with the ZrP loadings up to 5 wt%. The results reported herein would shed some light on the generation of environmental nanocomposites with high capacity and excellent mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvino WM, Skriba MC (1983) Osmotic shock stability of ion-exchange resins. Ind Eng Chem Prod Res Dev 22:150–157

    Article  CAS  Google Scholar 

  • Behrens SH, Christl DI, Emmerzael R, Schurtenberger P, Borkovec M (2000) Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory. Langmuir 21:2566–2575

    Article  Google Scholar 

  • Blaney LM, Cinar S, Sengupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41:1603–1613

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2009) Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 43(18):7130–7135

    Article  CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  • Chang FF, Qu JH, Liu HJ, Liu RP, Zhao X (2009) Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation. J Coll Interface Sci 338:353–358

    Article  CAS  Google Scholar 

  • Cumbal L, Sengupta AK (2005) Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect. Environ Sci Technol 39(17):6508–6515

    Article  CAS  Google Scholar 

  • Derjaguin BV (1989) Theory of stability of colloids and thin films. Consultant Bureau, New York

    Google Scholar 

  • Dunphy-Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    Article  CAS  Google Scholar 

  • Friedrich K, Zhang Z, Schlarb AK (2005) Effects of various fillers on the sliding wear of polymer composites. Compos Sci Technol 65:2329–2343

    Article  CAS  Google Scholar 

  • Guo X, Chen F (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol 39:6808–6818

    Article  CAS  Google Scholar 

  • He B, Huang W (1995) Ion exchange and adsorptive resins. Shanghai Scientific Education Press, Shanghai

    Google Scholar 

  • Jang M, Chen WF, Cannon FS (2008) Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environ Sci Technol 42:3369–3374

    Article  CAS  Google Scholar 

  • Ji X, Hampsey JE, Hu Q, He J, Yang Z, Lu Y (2003) Mesoporous silica-reinforced polymer nanocomposites. Chem Mater 15:3656–3662

    Article  CAS  Google Scholar 

  • Jiang H, Moon K, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973

    Article  CAS  Google Scholar 

  • Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967

    Article  CAS  Google Scholar 

  • Kim Y, Carraway ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34:2014–2017

    Article  CAS  Google Scholar 

  • Li L, Fan MH, Brown RC, Van Leeuwen JH, Wang JJ, Wang WH, Song YH, Zhang PY (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36(5):405–431

    Article  CAS  Google Scholar 

  • Li A, Tai C, Zhao ZS, Wang YW, Zhang QH, Jiang GB, Hu JT (2007) Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environ Sci Technol 41:6841–6846

    Article  CAS  Google Scholar 

  • Lin J, Chang LC, Nien MH, Ho HL (2006) Mechanical behavior of various nanoparticle filled composites at low-velocity impact. Compos Struct 74:30–36

    Article  Google Scholar 

  • Mukherjee B, Weaver JW (2010) Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly charged inorganic ions. Environ Sci Technol 44(9):3332–3338

    Article  CAS  Google Scholar 

  • Mulvhill MJ, Habast SE, Plante LJ, Wan J, Mokari T (2010) Influence of size, shape, and surface coating on the stability of aqueous suspensions of CdSe nanoparticles. Chem Mater 22:5251–5257

    Article  Google Scholar 

  • Pan BC, Pan BJ, Chen XQ, Zhang WM, Zhang QJ, Zhang QX, Chen JL (2006) Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water. Water Res 40(15):2938–2946

    Article  CAS  Google Scholar 

  • Pan BC, Zhang QR, Du W, Zhang WM, Zhang QJ (2007a) Selective heavy metals removal from waters by amorphous zirconium phosphate. Behavior and mechanism. Water Res 41(14):3103–3111

    Article  CAS  Google Scholar 

  • Pan BC, Zhang QR, Zhang WM, Pan BJ, Du W, Lv L, Zhang QJ, Zhang QX (2007b) Highly effective removal of heavy metals by polymer-based zirconium phosphate. A case study of lead ion. J Coll Interface Sci 310:99–105

    Article  CAS  Google Scholar 

  • Pan BJ, Wu J, Pan BC, Lv L, Zhang WM, Xiao LL, Wang XS, Tao XS, Zheng SR (2009) Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Res 43:4421–4429

    Article  CAS  Google Scholar 

  • Pan BJ, Qiu H, Pan BC, Nie GZ, Xiao LL, Lv L, Zhang WM, Zheng SR (2010) Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study. Water Res 44(3):815–824

    Article  CAS  Google Scholar 

  • Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24:6659–6667

    Article  CAS  Google Scholar 

  • Phillips DH, Van Nooten T, Bastiaens L, Russell MI, Dickson K, Plant S, Ahad JME, Newton T, Kalin RM (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ Sci Technol 44(10):3861–3869

    Article  CAS  Google Scholar 

  • Sarkar S, SenGupta AK (2010) The Donnan membrane principle opportunities for sustainable engineered processes and materials. Environ Sci Technol 44:1161–1166

    Article  CAS  Google Scholar 

  • Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Comp Sci Technol 63:2055–2067

    Article  CAS  Google Scholar 

  • Xing MY, Zhang JL, Chen F (2010) Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant. Appl Catal B Environ 97:182–189

    Article  Google Scholar 

  • Zhang N, Lin LS, Gang DC (2008a) Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res 42:3809–3816

    Article  CAS  Google Scholar 

  • Zhang QR, Pan BC, Zhang WM et al (2008b) Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2. Environ Sci Technol 42:4140–4145

    Article  CAS  Google Scholar 

  • Zhang QR, Pan BC, Zhang WM et al (2009a) Selective removal of Pb(II), Cd(II), and Zn(II) ions from waters by an inorganic exchanger Zr(HPO3S)2. J Hazard Mater 170:824–828

    Article  CAS  Google Scholar 

  • Zhang QR, Jiang PG, Pan BC et al (2009b) Impregnating zirconium phosphate onto porous polymers for lead removal from waters: effect of nanosized particles and polymer chemistry. Ind Eng Chem Res 48:4495–4499

    Article  CAS  Google Scholar 

  • Zhang HJ, Zhang ZZ, Guo F, Liu M (2009c) Friction and wear behavior of the hybrid PTFE/cotton fabric composites filled with TiO2 nanoparticles and modified TiO2 nanoparticles. Polym Eng Sci 49:115–122

    Article  CAS  Google Scholar 

  • Zhao Q, Bahadur S (1999) The mechanism of filler action and criterion of filler selection for reducing wear. Wear 225–229:660–668

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the NSFC (51078179/51008151), the Jiangsu Science and Technology Department (BK2009253/BZ2010067), and the Shanghai Tongji Gao-Tingyao Environmental Science and Technology Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingcai Pan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2011_521_MOESM1_ESM.doc

Zeta potentials of nano-ZrP at different solution pHs and nano-ZrP size distribution at different SDS levels are presented in Fig. S1–2. Supplementary material 1 (DOC 551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Pan, B., Zhang, S. et al. New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. J Nanopart Res 13, 5355–5364 (2011). https://doi.org/10.1007/s11051-011-0521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0521-x

Keywords

Navigation