Skip to main content
Log in

Olefin hydrogenation catalysis of platinum nanocrystals with different shapes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have investigated the catalysis of Pt nanocrystals for olefin hydrogenation in liquid phase by using several kinds of Pt nanocrystals with different shapes, whose results suggest that Pt cube shows the highest catalytic activity without significant shape change after the repeated hydrogenation. We prepared four nanocrystals according to our original methods: four kinds of Pt cubes (6.7, 8.2, 9.5, and 10.1 nm), Pt tetrahedron (4.6 nm), Pt nanowire (2.0 nm), and Pt cuboctahedron (7.5 nm) with high shape selectivity and narrow size distributions. To avoid the effect of different surface protecting agent on hydrogenation, we use the same polymer (polyacrylic acid) to stabilize four kinds of Pt nanocrystals. We adopted olefins with different structural characteristics, such as hexene, cyclohexene, cis-, and trans-stilbene. Turnover frequency (TOF) values for the hydrogenation of both cis- and trans-stilbene exhibit the following order: Pt cube > Pt cuboctahedron > Pt tetrahedron ≈ Pt nanowire, in accord with the ratio of Pt(100) on the surface of Pt nanocrystals. Raman spectroscopy of chemically adsorbed trans-stilbene on Pt cube and Pt tetrahedron indicates that the C–C double bonds of olefin group and phenyl group prefer to interact with Pt(100) facet, coinciding with its highest activity for olefin hydrogenation. The hydrogenation of cyclohexene as well as 1-hexene over Pt cubes with different sizes gave similar TOF values, suggesting that the hydrogenation takes place preferentially on the planes of Pt(100) facet in liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926

    Article  CAS  Google Scholar 

  • Anderson JR (1975) Structure of metallic catalysts. Academic Press, London

    Google Scholar 

  • Bernardo CGPM, Gomes JANF (2001) The adsorption of ethylene on the (100) surfaces of platinum, palladium and nickel: a DFT study. J Mol Struct (Theochem) 542:263–271

    Article  CAS  Google Scholar 

  • Bratlie KM, Flores LD, Somorjai GA (2005) Hydrogenation and dehydrogenation of cyclohexene on Pt(100): a sum frequency generation vibrational spectroscopic and kinetic study. Surf Sci 599:93–106

    Article  CAS  Google Scholar 

  • Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett 7:3097–3101

    Article  CAS  Google Scholar 

  • Bürgi T, Atamny F, Schlögl R, Baiker A (2000) Adsorption of ethyl pyruvate on Pt(111) studied by XPS and UPS. J Phys Chem B 104:5953–5960

    Article  Google Scholar 

  • Chen JH, Yau SL, Chang SC (2002) An in situ scanning tunneling microscopy and cyclic voltammetric study of iodobenzene and iodoheptane molecules adsorbed on a Pt(111) electrode. J. Phys Chem B 106:9079–9085

    Article  CAS  Google Scholar 

  • Chen J, Xiong Y, Yin Y, Xia Y (2006) Pt nanoparticles surfactant-directed assembled into colloidal spheres and used as substrates in forming Pt nanorods and nanowires. Small 2:1340–1343

    Article  CAS  Google Scholar 

  • Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95

    Article  Google Scholar 

  • Fu X, Wang Y, Wu N, Gui L, Tang Y (2002) Shape-selective preparation and properties of oxalate-stabilized Pt colloid. Langmuir 18:4619–4624

    Article  CAS  Google Scholar 

  • Ge Q, King DA (1999) The chemisorption and dissociation of ethylene on Pt{111} from first principles. J Chem Phys 110:4699–4702

    Article  CAS  Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  CAS  Google Scholar 

  • Grass ME, Yue Y, Habas SE, Rioux RM, Teall CI, Yang P, Somorjai GA (2008) Silver ion mediated shape control of platinum nanoparticles: removal of silver by selective etching leads to increased catalytic activity. J Phys Chem C 112:4797–4804

    Article  CAS  Google Scholar 

  • Hardeveld RV, Hartog F (1969) The statistics of surface atoms and surface sites on metal crystals. Surf Sci 15:189–230

    Article  Google Scholar 

  • Herricks T, Chen J, Xia Y (2004) Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 4:2367–2371

    Article  CAS  Google Scholar 

  • Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M (2006) Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew Chem Int Ed 45:7063–7066

    Article  CAS  Google Scholar 

  • Kinge S, Bönnemann H (2006) One-pot dual size- and shape selective synthesis of tetrahedral Pt nanoparticles. Appl Organomet Chem 20:784–787

    Article  CAS  Google Scholar 

  • Kweskin SJ, Rioux RM, Habas SE, Komvopoulos K, Yang P, Somorjai GA (2006) Carbon monoxide adsorption and oxidation on monolayer films of cubic platinum nanoparticles investigated by infrared-visible sum frequency generation vibrational spectroscopy. J Phys Chem B 110:15920–15925

    Article  CAS  Google Scholar 

  • Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed 45:7824–7828

    Article  CAS  Google Scholar 

  • Louette P, Bodino F, Pireaux J-J (2005) Poly(acrylic acid) (PAA) XPS reference core level and energy loss spectra. Surf Sci Spectra 12:22–26

    Article  CAS  Google Scholar 

  • Mittendorfer F, Thomazeau C, Raybaud P, Toulhoat H (2003) Adsorption of unsaturated hydrocarbons on Pd(111) and Pt(111): a DFT study. J Phys Chem B 107:12287–12295

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2004a) Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J Am Chem Soc 126:7194–7195

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2004b) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2005a) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2005b) Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the Suzuki reaction. Langmuir 21:2027–2033

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2008) Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top Catal 47:15–21

    Article  CAS  Google Scholar 

  • Narayanan R, Tabor C, El-Sayed MA (2008) Can the observed changes in the size or shape of a colloidal nanocatalyst reveal the nanocatalysis mechanism type: homogeneous or heterogeneous? Top Catal 48:60–74

    Article  CAS  Google Scholar 

  • Ng YH, Ikeda S, Harada T, Higashida S, Sakata T, Mori H, Matsumura M (2007) Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction. Adv Mater 19:597–601

    Article  CAS  Google Scholar 

  • Okamoto K, Akiyama R, Yoshida H, Yoshida T, Kobayashi S (2005) Formation of nanoarchitectures including subnanometer palladium clusters and their use as highly active catalysts. J Am Chem Soc 127:2125–2135

    Article  CAS  Google Scholar 

  • Peng ZM, You HJ, Yang H (2010) Composition-dependent formation of platinum silver nanowires. ACS Nano 4:1501–1510

    Article  CAS  Google Scholar 

  • Petroski J, El-Sayed MA (2003) FTIR study of the adsorption of the capping material to different platinum nanoparticle shapes. J Phys Chem A 107:8371–8375

    Article  CAS  Google Scholar 

  • Rioux RM, Song H, Grass M, Habas S, Niesz K, Hoefelmeyer JD, Yang P, Somorjai GA (2006) Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects. Top Catal 39:167–174

    Article  CAS  Google Scholar 

  • Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132:5622–5624

    Article  Google Scholar 

  • Serrano-Ruiz JC, López-Cudero A, Solla-Gullón J, Sepúlveda-Escribano A, Aldaz A, Rodríguez-Reinoso F (2008) Hydrogenation of α, β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon. J Catal 253:159–166

    Article  CAS  Google Scholar 

  • Shen Z, Yamada M, Miyake M (2007) Preparation of single-crystalline platinum nanowires with small diameters under mild conditions. Chem Commun 245–247

  • Somorjai GA (2008) The 13th international symposium on relations between homogeneous and heterogeneous catalysis—an introduction. Top Catal 48:1–7

    Article  CAS  Google Scholar 

  • Somorjai GA, Park JY (2008) Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top Catal 49:126–135

    Article  CAS  Google Scholar 

  • Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) Pt nanocrystals: shape control and langmuir-Blodgett Monolayer formation. J Phys Chem B 109:188–193

    Article  CAS  Google Scholar 

  • Teranishi T, Kurita R, Miyake M (2000) Shape control of Pt nanoparticles. J Inorg Organomet Polym 10:145–156

    Article  CAS  Google Scholar 

  • Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Electro-oxidation activity nanocrystals with high-index facets and high synthesis of tetrahexahedral platinum. Science 316:732–735

    Article  CAS  Google Scholar 

  • Tsung CK, Kuhn JN, Huang W, Aliaga C, Hung L, Somorjai GA, Yang P (2009) Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J Am Chem Soc 131:5816–5822

    Article  CAS  Google Scholar 

  • Watanabe H, Okamoto Y, Furuya K, Sakamoto A, Tasumi M (2002) Vibrational analysis of trans-stilbene in the ground and excited singlet electronic states revisited. J Phys Chem A 106:3318–3324

    Article  CAS  Google Scholar 

  • Yamada M, Kon S, Miyake M (2005) Synthesis and size control of Pt nanocubes with high selectivity using the additive effect of NaI. Chem Lett 34:1050–1051

    Article  CAS  Google Scholar 

  • Yu Y, Xu B (2006) Shape-controlled synthesis of Pt nanocrystals: an evolution of the tetrahedral shape. Appl Organomet Chem 20:638–647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fuel Cell Cutting-Edge Science Research Project (No. 08001242-0) and Development of PEFC Technologies aiming for Practical Application/Base technology/Analysis of Morphology, Electrochemical reaction and Mass transfer for MEA materials (No. 10000806-0) from NEDO, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Miyake.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information Available (DOC 1849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, M., Miyabayashi, K., Shen, Z. et al. Olefin hydrogenation catalysis of platinum nanocrystals with different shapes. J Nanopart Res 13, 5147–5156 (2011). https://doi.org/10.1007/s11051-011-0497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0497-6

Keywords

Navigation