Skip to main content
Log in

The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we developed a convenient one-pot method with sodium oleate as both the surfactant and precipitant to synthesize pure magnetite nanoparticles in the water/ethanol/toluene system. The initial molar ratio of [Fe3+]/[Fe2+] and the concentration of iron salts were changed in order to systematically investigate their influences on the chemical and physical properties of nanoparticles, such as the crystal structure, morphology, particle sizes, dispersion and magnetism. Samples were determined by XRD, XPS, FTIR, DLS, and VSM. The oleate coating steadily existed on the surface of the nanoparticles to profit them of excellent monodispersibility and stability in non-polar solvents with very narrow size distribution and extremely approximate mean diameters of ~7 nm. Particles consisted mainly of magnetite with a little or no maghemite phase with the molar ratio of [Fe3+]/[Fe2+] decreasing from 2:1 to 1:1, but they all exhibited superparamagnetism at room temperature. After the optimization, pure magnetite nanoparticles could be prepared with the saturation magnetization successfully increasing to 75 emu/g(Fe), when the molar ratio of [Fe3+]/[Fe2+] was 1.5:1 and the concentration of iron precursors was 95 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32. doi:10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  • Blinov AV, Ramazanova AG, Korolev VV (2002) Heats of adsorption of sodium oleate from aqueous solutions on the surface of magnetite. Russ J Phys Chem 76(5):806–808

    Google Scholar 

  • Bronstein LM, Huang XL, Retrum J, Schmucker A, Pink M, Stein BD, Dragnea B (2007) Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem Mater 19(15):3624–3632. doi:10.1021/cm062948j

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  Google Scholar 

  • Chandrappa KG, Venkatesha TV, Vathsala K, Shivakumara C (2010) A hybrid electrochemical-thermal method for the preparation of large ZnO nanoparticles. J Nanopart Res 12(7):2667–2678

    Article  CAS  Google Scholar 

  • De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19(7):1821–1831. doi:10.1021/Cm0628000

    Article  Google Scholar 

  • Fan QL, Neoh KG, Kang ET, Shuter B, Wang SC (2007) Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials 28(36):5426–5436. doi:10.1016/j.biomaterials.2007.08.039

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • Jeong U, Teng XW, Wang Y, Yang H, Xia YN (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19(1):33–60. doi:10.1002/adma.200600674

    Article  CAS  Google Scholar 

  • Jiang W, Wu Y, He B, Zeng XB, Lai KL, Gu ZW (2010) Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. J Colloid Interface Sci 347(1):1–7. doi:10.1016/j.jcis.2010.02.055

    Article  CAS  Google Scholar 

  • Jun YW, Seo JW, Cheon A (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41(2):179–189. doi:10.1021/ar700121f

    Article  CAS  Google Scholar 

  • Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36. doi:10.1016/S0304-8853(00)01224-5

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi:10.1021/Cr068445e

    Article  CAS  Google Scholar 

  • Liu XQ, Kaminski MD, Guan YP, Chen HT, Liu HZ, Rosengart AJ (2006) Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater 306(2):248–253. doi:10.1016/j.jmmm.2006.03.049

    Article  CAS  Google Scholar 

  • Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):46–55. doi:10.1016/j.jmmm.2006.05.001

    Article  CAS  Google Scholar 

  • Mialon G, Gohin M, Gacoin T, Boilot JP (2008) High temperature strategy for oxide nanoparticle synthesis. Acs Nano 2(12):2505–2512. doi:10.1021/Nn8005784

    Article  CAS  Google Scholar 

  • Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: Dependence on surface modification. Langmuir 20(6):2472–2477. doi:10.1021/La035648e

    Article  CAS  Google Scholar 

  • Namduri H, Nasrazadani S (2008) Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros Sci 50(9):2493–2497. doi:10.1016/j.corsci.2008.06.034

    Article  CAS  Google Scholar 

  • Prakash R, Choudhary RJ, Chandra LSS, Lakshmi N, Phase DM (2007) Electrical and magnetic transport properties of Fe3O4 thin films on a GaAs(100) substrate. J Phys Condens Mater 19: 486212. doi:10.1088/0953-8984/19/48/486212

  • Ruby C, Humbert B, Fusy J (2000) Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surf Interface Anal 29(6):377–380. doi:10.1002/1096-9918(200006)

    Article  CAS  Google Scholar 

  • Salazar JS, Perez L, de Abril O, Lai TP, Ihiawakrim D, Vazquez M, Greneche JM, Begin-Colin S, Pourroy G (2011) Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem Mater 23(6):1379–1386

    Google Scholar 

  • Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279. doi:10.1021/Ja0380852

    Article  CAS  Google Scholar 

  • Teng XW, Yang H (2004) Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. J Mater Chem 14(4):774–779. doi:10.1039/B311610g

    Article  CAS  Google Scholar 

  • Vidal–Vidal J, Rivas J, Lopez-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloid Surface A 288(1–3):44–51. doi:10.1016/j.colsurfa.2006.04.027

    Article  Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li YD (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124. doi:10.1038/Nature03968

    Article  CAS  Google Scholar 

  • Wen XT, Yang JX, He B, Gu ZW (2008) Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr Appl Phys 8(5):535–541. doi:10.1016/j.cap.2007.09.003

    Article  Google Scholar 

  • Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818. doi:10.1021/Cm049552x

    Article  CAS  Google Scholar 

  • Wu SYH, Tseng CL, Lin FH (2010) A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia. J Nanopart Res 12(4):1173–1185

    Article  CAS  Google Scholar 

  • Xu CJ, Sun SH (2009) Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Trans 29:5583–5591. doi:10.1039/B900272n

    Article  Google Scholar 

  • Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449. doi:10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  • Zhang L, He R, Gu HC (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253(5):2611–2617. doi:10.1016/j.apsusc.2006.05.023

    Article  CAS  Google Scholar 

  • Zhou HF, Yi R, Li JH, Su Y, Liu XH (2010) Microwave-assisted synthesis and characterization of hexagonal Fe3O4 nanoplates. Solid State Sci 12(1):99–104. doi:10.1016/j.solidstatesciences.2009.10.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Basic Research Program of China (National 973 program, No. 2011CB606206), the National Natural Science Foundation of China (31070849, 50830105), the Department of Science and Technology of Sichuan Province (2009HH0001, 2009SZ0137) and the Ministry of Science and Technology (2010DFA51550).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Wu or Zhong-Wei Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Lai, KL., Hu, H. et al. The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J Nanopart Res 13, 5135–5145 (2011). https://doi.org/10.1007/s11051-011-0495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0495-8

Keywords

Navigation