Skip to main content

A study of oleic acid-based hydrothermal preparation of CoFe2O4 nanoparticles

Abstract

Nearly monodisperse, well crystalline, superparamagnetic CoFe2O4 nanoparticles with diameter of 6 nm were synthesized in oleic acid–water–pentanol system at 180 °C. Hydrothermal procedure, as an efficient and environment friendly alternative to organic decomposition methods, was investigated by variation of reaction conditions, and the particle formation mechanism was finally proposed (i.e., hydrolysis of metal oleates in organic phase, with size of the particles (5–8 nm) controlled by polarity-driven precipitation into water phase). As-prepared particles were hydrophobic due to coating by oleic acid. Further modification with dimercaptosuccinic acid led to water-dispersible particles with hydrodynamic diameter of 20 nm. Prepared particles were investigated by TEM, XRD, ICP-AES, light scattering, SQUID magnetometry, and Mössbauer spectroscopy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Bao N, Shen L, An W, Padhan P, Turner CH, Gupta A (2009) Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem Mater 21(14):3458–3468. doi:10.1021/cm901033m

    Article  CAS  Google Scholar 

  • Blaskov V, Petkov V, Rusanov V, Martinez L, Martinez B, Munoz J, Mikhov M (1996) Magnetic properties of nanophase CoFe2O4 particles. J Magn Magn Mater 162(2–3):331–337

    Article  CAS  Google Scholar 

  • Bouhas A, Amzal M, Zouranen B (1993) Mossbauer study of the calcium substituted cobalt ferrite. Mater Chem Phys 33(1–2):80–84

    Article  CAS  Google Scholar 

  • Bozorth R, Tilden E, Williams A (1955) Anisotropy and magnetostriction of some ferrites. Phys Rev 99(6):1788–1798

    Article  CAS  Google Scholar 

  • Cannas C, Musinu A, Ardu A, Orru F, Peddis D, Casu M, Sanna R, Angius F, Diaz G, Piccaluga G (2010) CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: magnetic and spectroscopic study. Chem Mater 22(11):3353–3361. doi:10.1021/cm903837g

    Article  CAS  Google Scholar 

  • Cao SW, Zhu YJ, Chang J (2008) Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol-water system. New J Chem 32(9):1526–1530. doi:10.1039/b719436f

    Article  CAS  Google Scholar 

  • Ge J, Xu S, Zhuang J, Wang X, Peng Q, Li Y (2006) Synthesis of CdSe, ZnSe, and Zn x Cd1-x Se nanocrystals and their silica sheathed core/shell structures. Inorg Chem 45(13):4922–4927. doi:10.1021/ic051598k

    Article  CAS  Google Scholar 

  • Goodwin S, Peterson C, Hoh C, Bittner C (1999) Targeting and retention of magnetic targeted carriers (mtcs) enhancing intra-arterial chemotherapy. J Magn Magn Mater 194(1–3):132–139

    Article  CAS  Google Scholar 

  • Gu Z, Xiang X, Fan G, Li F (2008) Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route. J Phys Chem C 112(47):18459–18466. doi:10.1021/jp806682q

    CAS  Google Scholar 

  • Gyergyek S, Makovec D, Kodre A, Arcon I, Jagodic M, Drofenik M (2010) Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res 12(4):1263–1273. doi:10.1007/s11051-009-9833-5

    Article  CAS  Google Scholar 

  • Hanh N, Quy O, Thuy N, Tung L, Spinu L (2003) Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties. Physica B 327(2–4):382–384

    Article  CAS  Google Scholar 

  • Hu H, Chen Z, Cao T, Zhang Q, Yu M, Li F, Yi T, Huang C (2008) Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence. Nanotechnology 19(37):375702-1–375702-9. doi:10.1088/0957-4484/19/37/375702

    Google Scholar 

  • Jun Y, Huh Y, Choi J, Lee J, Song H, Kim S, Yoon S, Kim K, Shin J, Suh J, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733. doi:10.1021/ja0422155

    Article  CAS  Google Scholar 

  • Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA (2006) Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B 110(23):11160–11166. doi:10.1021/jp060974z

    CAS  Google Scholar 

  • Li XH, Xu CL, Han XH, Qiao L, Wang T, Li FS (2010) Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res Lett 5(6):1039–1044. doi:10.1007/s11671-010-9599-9

    Article  CAS  Google Scholar 

  • Liang X, Wang X, Zhuang J, Chen Y, Wang D, Li Y (2006) Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funct Mater 16(14):1805–1813. doi:10.1002/adfm.200500884

    Article  CAS  Google Scholar 

  • Liu C, Zou B, Rondinone A, Zhang J (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122(26):6263–6267. doi:10.1021/ja000784g

    Article  CAS  Google Scholar 

  • Lu J, Deng H, Huang H (2000) Thermal relaxation of interacting fine magnetic particles - field-cooled and zero-field-cooled magnetization variation. J Magn Magn Mater 209(1–3):37–41

    Article  CAS  Google Scholar 

  • Pankhurst Q, Pollard R (1991) Origin of the spin-canting anomaly in small ferrimagnetic particles. Phys Rev Lett 67(2):248–250

    Article  CAS  Google Scholar 

  • Philipse A, Vanbruggen M, Pathmamanoharan C (1994) Magnetic silica dispersions—preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10(1):92–99

    Article  CAS  Google Scholar 

  • Roca AG, Niznansky D, Poltierova-Vejpravova J, Bittova B, Gonzalez-Fernandez MA, Serna CJ, Morales MP (2009) Magnetite nanoparticles with no surface spin canting. J Appl Phys 105(11):114309. doi:10.1063/1.3133228

    Article  Google Scholar 

  • Roca AG, Veintemillas-Verdaguer S, Port M, Robic C, Serna CJ, Morales MP (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113(19):7033–7039. doi:10.1021/jp807820s

    Article  CAS  Google Scholar 

  • Sincai M, Ganga D, Bica D, Vekas L (2001) The antitumor effect of locoregional magnetic cobalt ferrite in dog mammary adenocarcinoma. J Magn Magn Mater 225(1–2):235–240

    Article  CAS  Google Scholar 

  • Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82(2):269–280

    Article  CAS  Google Scholar 

  • Sun S, Zeng H, Robinson D, Raoux S, Rice P, Wang S, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279. doi:10.1021/ja0380852

    Article  CAS  Google Scholar 

  • Taniguchi T, Nakagawa K, Watanabe T, Matsushita N, Yoshimura M (2009) Hydrothermal growth of fatty acid stabilized iron oxide nanocrystals. J Phys Chem C 113(3):839–843. doi:10.1021/jp8062433

    Article  CAS  Google Scholar 

  • Tartaj P, Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna C (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197

    Article  CAS  Google Scholar 

  • Torres T, Roca A, Morales M, Ibarra A, Marquina C, Ibarra M, Goya G (2010) Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J Phys: Conf Ser 200(7):072101. doi:10.1088/1742-6596/200/7/072101

    Article  Google Scholar 

  • Wang L, Li Y (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater 19(4):727–734. doi:10.1021/cm061887m

    Article  CAS  Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124. doi:10.1038/nature03968

    Article  CAS  Google Scholar 

  • Zhang F, Li J, Shan J, Xu L, Zhao D (2009) Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chem-Eur J 15(41):11010–11019. doi:10.1002/chem.200900861

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grant Agency of the Czech Republic under project no. P108/10/1250 and by the Long-Term Research Plan of the Ministry of Education of the Czech Republic (MSM0021620857). A. Repko thanks to M. P. Morales and C. Serna from Instituto de Ciencia de Materiales de Madrid, CSIC, Spain for their help with characterization of the samples and fruitful discussions during his stay in Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Repko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Repko, A., Nižňanský, D. & Poltierová-Vejpravová, J. A study of oleic acid-based hydrothermal preparation of CoFe2O4 nanoparticles. J Nanopart Res 13, 5021 (2011). https://doi.org/10.1007/s11051-011-0483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0483-z

keywords

  • Cobalt ferrite
  • Hydrothermal synthesis
  • Magnetic particles
  • Superparamagnetism