Abstract
On the example of silicon, the production of nanoparticles using spark discharge is shown to be feasible for semiconductors. The discharge circuit is modelled as a damped oscillator circuit. This analysis reveals that the electrode resistance should be kept low enough to limit energy loss by Joule heating and to enable effective nanoparticle production. The use of doped electrodes results in a thousand-fold increase in the mass production rate as compared to intrinsic silicon. Pure and oxidised uniformly sized silicon nanoparticles with a primary particle diameter of 3–5 nm are produced. It is shown that the colour of the particles can be used as a good indicator of the oxidation state. If oxygen and water are banned from the spark generation system by (a) gas purification, (b) outgassing and (c) by initially using the particles produced as getters, unoxidised Si particles are obtained. They exhibit pyrophoric behaviour. This continuous nanoparticle preparation method can be combined with other processing techniques, including surface functionalization or the immediate impaction of freshly prepared nanoparticles onto a substrate for applications in the field of batteries, hydrogen storage or sensors.
This is a preview of subscription content, access via your institution.











References
Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377. doi:10.1038/nmat1368
Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134(10):1980–1990. doi:10.1039/B911965P
Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2006) Self assembled monolayers on silicon for molecular electronics. Anal Chim Acta 568(1–2):84–108. doi:10.1016/j.aca.2005.10.027
Ben-Chorin M, Kux A, Schechter I (1994) Adsorbate effects on photoluminescence and electrical conductivity of porous silicon. Appl Phys Lett 64(4):481–483. doi:10.1063/1.111136
Biskos G, Kovacik P, Schmidt-Ott A (2010) A new particle based gas sensor concept applied to hydrogen. Paper presented at the world conference on particle technology, Neuremburg, Germany, April 26–29
Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi:10.1021/cr030063a
Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102(5):1271–1308. doi:10.1021/cr000064s
Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chemical Society Reviews 35(11):1028–1042
Byeon JH, Park JH, Hwang J (2008) Spark generation of monometallic and bimetallic aerosol nanoparticles. J Aerosol Sci 39(10):888–896. doi:10.1016/j.jaerosci.2008.05.006
Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048. doi:10.1063/1.103561
Cundall CM, Craggs JD (1955) Electrode vapour jets in spark discharges. Spectrochim Acta 7(3):149–152. doi:10.1016/0371-1951(55)80018-5
De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241. doi:10.1002/adma.200703183
Ding N, Xu J, Yao Y, Wegner G, Lieberwirth I, Chen C (2009) Improvement of cyclability of si as anode for li-ion batteries. J Power Sources 192(2):644–651. doi:10.1016/j.jpowsour.2009.03.017
Foucaran A, Pascal-Delannoy F, Giani A, Sackda A, Combette P, Boyer A (1997) Porous silicon layers used for gas sensor applications. Thin Solid Films 297(1–2):317–320. doi:10.1016/s0040-6090(96)09437-0
Ghoshal S, Mitra D, Roy S, Dutta Majumder D (2010) Biosensors and biochips for nanomedical applications: a review. Sens Tranducers J 113(2):1–17
Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49(8):1362–1395. doi:10.1002/anie.200903053
Gray EW, Pharney JR (1974) Electrode erosion by particle ejection in low-current arcs. J Appl Phys 45(2):667–671. doi:10.1063/1.1663300
Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338. doi:10.1021/cr050149z
Hua F, Erogbogbo F, Swihart MT, Ruckenstein E (2006) Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22(9):4363–4370. doi:10.1021/la0529106
Janot R, Cuevas F, Latroche M, Percheron-Guégan A (2006) Influence of crystallinity on the structural and hydrogenation properties of Mg2x phases (x = Ni, Si, Ge, Sn). Intermetallics 14(2):163–169. doi:10.1016/j.intermet.2005.05.003
Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039. doi:10.1016/j.jpowsour.2006.09.084
Létant S, Sailor MJ (2000) Detection of hf gas with a porous silicon interferometer. Advanced Materials 12(5):355–359. doi:10.1002/(SICI)1521-4095(200003)12:5<355::AID-ADMA355>3.0.CO;2-H
Li S, Germanenko IN, El-Shall MS (1999) Nanoparticles from the vapor phase: Synthesis and characterization of si, ge, MoO3, and WoO3 nanocrystals. J Clust Sci 10(4):533–547. doi:10.1023/a:1021957108775
Li X, He Y, Swihart MT (2004) Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. Langmuir 20:4720–4727. doi:10.1021/la036219j
Liao Y-C, Roberts JT (2006) Self-assembly of organic monolayers on aerosolized silicon nanoparticles. J Am Chem Soc 128(28):9061–9065. doi:10.1021/ja0611238
Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annual Review of Materials Research 34(1):41–81. doi:10.1146/annurev.matsci.34.052803.090949
Nayfeh OM, Rao S, Smith A, Therrien J, Nayfeh MH (2004) Thin film silicon nanoparticle UV photodetector. Photonics Technology Letters. IEEE 16(8):1927–1929 10.1109/LPT.2004.831271
O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. International journal of Nanomedicine 1(4):451–472. doi:10.2147/IJN.S
Peineke C, Schmidt-Ott (2006) A highly porous nanostructured materials from impacted nanoparticles. In Biswas P, Chen D-R, Hering S (eds) Proceedings of 7th international aerosol conference. American Association for Aerosol Research
Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19(5):639–642. doi:10.1016/0021-8502(88)90215-7
Scriba MR, Arendse C, Härting M, Britton DT (2008) Hot-wire synthesis of si nanoparticles. Thin Solid Films 516(5):844–846. doi:10.1016/j.tsf.2007.06.191
Simonin L, Lafont U, Tabrizi N, Schmidt-Ott A, Kelder EM (2007) Sb/o nano-composites produced via spark discharge generation for li-ion battery anodes. J Power Sources 174(2):805–809. doi:10.1016/j.jpowsour.2007.06.197
Soldera FA, Mucklich FT, Hrastnik K, Kaiser T (2004) Description of the discharge process in spark plugs and its correlation with the electrode erosion patterns. IEEE Trans Veh Technol 53(4):1257–1265. doi:10.1109/TVT.2004.830977
Soldera F, Lasagni A, Mucklich F, Kaiser T, Hrastnik K (2005) Determination of the cathode erosion and temperature for the phases of high voltage discharges using fem simulations. Comput Mater Sci 32(1):123–139. doi:10.1016/j.commatsci.2004.06.004
Tabrizi NS (2009) Generation of nanoparticles by spark discharge. Delft University of Technology, Delft
Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009a) Generation of nanoparticles by spark discharge. J Nanopart Res 11(2):315–332. doi:10.1007/s11051-008-9407-y
Tabrizi NS, Xu Q, van der Pers NM, Lafont U, Schmidt-Ott A (2009b) Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res 11(5):1209–1218. doi:10.1007/s11051-008-9568-8
Tabrizi NS, Xu Q, van der Pers N, Schmidt-Ott A (2010) Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J Nanopart Res 12(1):247–259. doi:10.1007/s11051-009-9603-4
Thurber WR, Mattis RL, Liu YM, Filliben JJ (1980) Resistivity-dopant density relationship for boron-doped silicon. J Electrochem Soc 127(10):2291–2294. doi:10.1149/1.2129394
Watanabe K, Okada T, Choe I, Sato Y (1996) Organic vapor sensitivity in a porous silicon device. Sens Actuators B 33(1–3):194–197. doi:10.1016/0925-4005(96)80097-9
Wiedensohler A, Fissan HJ (1988) Aerosol charging in high purity gases. J Aerosol Sci 19(7):867–870. doi:10.1016/0021-8502(88)90054-7
Wiedensohler A, Fissan HJ (1991) Bipolar charge distributions of aerosol particles in high-purity argon and nitrogen. Aerosol Sci Technol 14(3):358–364. doi:10.1080/02786829108959498
Zhang XG (2001) Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum, New York
Acknowledgements
The authors thank Dr. Ugo Lafont for the TEM analysis. This research was supported by Agentschap NL (formerly SenterNovem). LCPMdS acknowledges the Netherlands Organization for Scientific Research (NWO) for a VENI grant. AV thanks the Erasmus Student Exchange Programme for a scholarship.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vons, V.A., de Smet, L.C.P.M., Munao, D. et al. Silicon nanoparticles produced by spark discharge. J Nanopart Res 13, 4867 (2011). https://doi.org/10.1007/s11051-011-0466-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11051-011-0466-0