Silicon nanoparticles produced by spark discharge

Abstract

On the example of silicon, the production of nanoparticles using spark discharge is shown to be feasible for semiconductors. The discharge circuit is modelled as a damped oscillator circuit. This analysis reveals that the electrode resistance should be kept low enough to limit energy loss by Joule heating and to enable effective nanoparticle production. The use of doped electrodes results in a thousand-fold increase in the mass production rate as compared to intrinsic silicon. Pure and oxidised uniformly sized silicon nanoparticles with a primary particle diameter of 3–5 nm are produced. It is shown that the colour of the particles can be used as a good indicator of the oxidation state. If oxygen and water are banned from the spark generation system by (a) gas purification, (b) outgassing and (c) by initially using the particles produced as getters, unoxidised Si particles are obtained. They exhibit pyrophoric behaviour. This continuous nanoparticle preparation method can be combined with other processing techniques, including surface functionalization or the immediate impaction of freshly prepared nanoparticles onto a substrate for applications in the field of batteries, hydrogen storage or sensors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377. doi:10.1038/nmat1368

    Article  CAS  Google Scholar 

  2. Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134(10):1980–1990. doi:10.1039/B911965P

    Article  CAS  Google Scholar 

  3. Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2006) Self assembled monolayers on silicon for molecular electronics. Anal Chim Acta 568(1–2):84–108. doi:10.1016/j.aca.2005.10.027

    Article  CAS  Google Scholar 

  4. Ben-Chorin M, Kux A, Schechter I (1994) Adsorbate effects on photoluminescence and electrical conductivity of porous silicon. Appl Phys Lett 64(4):481–483. doi:10.1063/1.111136

    Article  CAS  Google Scholar 

  5. Biskos G, Kovacik P, Schmidt-Ott A (2010) A new particle based gas sensor concept applied to hydrogen. Paper presented at the world conference on particle technology, Neuremburg, Germany, April 26–29

  6. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi:10.1021/cr030063a

    Article  CAS  Google Scholar 

  7. Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102(5):1271–1308. doi:10.1021/cr000064s

    Article  CAS  Google Scholar 

  8. Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chemical Society Reviews 35(11):1028–1042

    Article  CAS  Google Scholar 

  9. Byeon JH, Park JH, Hwang J (2008) Spark generation of monometallic and bimetallic aerosol nanoparticles. J Aerosol Sci 39(10):888–896. doi:10.1016/j.jaerosci.2008.05.006

    Article  CAS  Google Scholar 

  10. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048. doi:10.1063/1.103561

    Article  CAS  Google Scholar 

  11. Cundall CM, Craggs JD (1955) Electrode vapour jets in spark discharges. Spectrochim Acta 7(3):149–152. doi:10.1016/0371-1951(55)80018-5

    Article  CAS  Google Scholar 

  12. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241. doi:10.1002/adma.200703183

    Article  CAS  Google Scholar 

  13. Ding N, Xu J, Yao Y, Wegner G, Lieberwirth I, Chen C (2009) Improvement of cyclability of si as anode for li-ion batteries. J Power Sources 192(2):644–651. doi:10.1016/j.jpowsour.2009.03.017

    Article  CAS  Google Scholar 

  14. Foucaran A, Pascal-Delannoy F, Giani A, Sackda A, Combette P, Boyer A (1997) Porous silicon layers used for gas sensor applications. Thin Solid Films 297(1–2):317–320. doi:10.1016/s0040-6090(96)09437-0

    Article  CAS  Google Scholar 

  15. Ghoshal S, Mitra D, Roy S, Dutta Majumder D (2010) Biosensors and biochips for nanomedical applications: a review. Sens Tranducers J 113(2):1–17

    CAS  Google Scholar 

  16. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49(8):1362–1395. doi:10.1002/anie.200903053

    CAS  Google Scholar 

  17. Gray EW, Pharney JR (1974) Electrode erosion by particle ejection in low-current arcs. J Appl Phys 45(2):667–671. doi:10.1063/1.1663300

    Article  CAS  Google Scholar 

  18. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338. doi:10.1021/cr050149z

    Article  Google Scholar 

  19. Hua F, Erogbogbo F, Swihart MT, Ruckenstein E (2006) Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22(9):4363–4370. doi:10.1021/la0529106

    Article  CAS  Google Scholar 

  20. Janot R, Cuevas F, Latroche M, Percheron-Guégan A (2006) Influence of crystallinity on the structural and hydrogenation properties of Mg2x phases (x = Ni, Si, Ge, Sn). Intermetallics 14(2):163–169. doi:10.1016/j.intermet.2005.05.003

    Article  CAS  Google Scholar 

  21. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039. doi:10.1016/j.jpowsour.2006.09.084

    Article  CAS  Google Scholar 

  22. Létant S, Sailor MJ (2000) Detection of hf gas with a porous silicon interferometer. Advanced Materials 12(5):355–359. doi:10.1002/(SICI)1521-4095(200003)12:5<355::AID-ADMA355>3.0.CO;2-H

    Article  Google Scholar 

  23. Li S, Germanenko IN, El-Shall MS (1999) Nanoparticles from the vapor phase: Synthesis and characterization of si, ge, MoO3, and WoO3 nanocrystals. J Clust Sci 10(4):533–547. doi:10.1023/a:1021957108775

    Article  CAS  Google Scholar 

  24. Li X, He Y, Swihart MT (2004) Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. Langmuir 20:4720–4727. doi:10.1021/la036219j

    Article  CAS  Google Scholar 

  25. Liao Y-C, Roberts JT (2006) Self-assembly of organic monolayers on aerosolized silicon nanoparticles. J Am Chem Soc 128(28):9061–9065. doi:10.1021/ja0611238

    Article  CAS  Google Scholar 

  26. Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annual Review of Materials Research 34(1):41–81. doi:10.1146/annurev.matsci.34.052803.090949

    Article  CAS  Google Scholar 

  27. Nayfeh OM, Rao S, Smith A, Therrien J, Nayfeh MH (2004) Thin film silicon nanoparticle UV photodetector. Photonics Technology Letters. IEEE 16(8):1927–1929 10.1109/LPT.2004.831271

    CAS  Google Scholar 

  28. O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. International journal of Nanomedicine 1(4):451–472. doi:10.2147/IJN.S

    Article  Google Scholar 

  29. Peineke C, Schmidt-Ott (2006) A highly porous nanostructured materials from impacted nanoparticles. In Biswas P, Chen D-R, Hering S (eds) Proceedings of 7th international aerosol conference. American Association for Aerosol Research

  30. Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19(5):639–642. doi:10.1016/0021-8502(88)90215-7

    Article  CAS  Google Scholar 

  31. Scriba MR, Arendse C, Härting M, Britton DT (2008) Hot-wire synthesis of si nanoparticles. Thin Solid Films 516(5):844–846. doi:10.1016/j.tsf.2007.06.191

    Article  CAS  Google Scholar 

  32. Simonin L, Lafont U, Tabrizi N, Schmidt-Ott A, Kelder EM (2007) Sb/o nano-composites produced via spark discharge generation for li-ion battery anodes. J Power Sources 174(2):805–809. doi:10.1016/j.jpowsour.2007.06.197

    Article  CAS  Google Scholar 

  33. Soldera FA, Mucklich FT, Hrastnik K, Kaiser T (2004) Description of the discharge process in spark plugs and its correlation with the electrode erosion patterns. IEEE Trans Veh Technol 53(4):1257–1265. doi:10.1109/TVT.2004.830977

    Article  Google Scholar 

  34. Soldera F, Lasagni A, Mucklich F, Kaiser T, Hrastnik K (2005) Determination of the cathode erosion and temperature for the phases of high voltage discharges using fem simulations. Comput Mater Sci 32(1):123–139. doi:10.1016/j.commatsci.2004.06.004

    Article  CAS  Google Scholar 

  35. Tabrizi NS (2009) Generation of nanoparticles by spark discharge. Delft University of Technology, Delft

    Google Scholar 

  36. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009a) Generation of nanoparticles by spark discharge. J Nanopart Res 11(2):315–332. doi:10.1007/s11051-008-9407-y

    Article  CAS  Google Scholar 

  37. Tabrizi NS, Xu Q, van der Pers NM, Lafont U, Schmidt-Ott A (2009b) Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res 11(5):1209–1218. doi:10.1007/s11051-008-9568-8

    Article  CAS  Google Scholar 

  38. Tabrizi NS, Xu Q, van der Pers N, Schmidt-Ott A (2010) Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J Nanopart Res 12(1):247–259. doi:10.1007/s11051-009-9603-4

    Article  CAS  Google Scholar 

  39. Thurber WR, Mattis RL, Liu YM, Filliben JJ (1980) Resistivity-dopant density relationship for boron-doped silicon. J Electrochem Soc 127(10):2291–2294. doi:10.1149/1.2129394

    Article  CAS  Google Scholar 

  40. Watanabe K, Okada T, Choe I, Sato Y (1996) Organic vapor sensitivity in a porous silicon device. Sens Actuators B 33(1–3):194–197. doi:10.1016/0925-4005(96)80097-9

    Article  Google Scholar 

  41. Wiedensohler A, Fissan HJ (1988) Aerosol charging in high purity gases. J Aerosol Sci 19(7):867–870. doi:10.1016/0021-8502(88)90054-7

    Article  CAS  Google Scholar 

  42. Wiedensohler A, Fissan HJ (1991) Bipolar charge distributions of aerosol particles in high-purity argon and nitrogen. Aerosol Sci Technol 14(3):358–364. doi:10.1080/02786829108959498

    Article  CAS  Google Scholar 

  43. Zhang XG (2001) Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum, New York

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ugo Lafont for the TEM analysis. This research was supported by Agentschap NL (formerly SenterNovem). LCPMdS acknowledges the Netherlands Organization for Scientific Research (NWO) for a VENI grant. AV thanks the Erasmus Student Exchange Programme for a scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmidt-Ott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vons, V.A., de Smet, L.C.P.M., Munao, D. et al. Silicon nanoparticles produced by spark discharge. J Nanopart Res 13, 4867 (2011). https://doi.org/10.1007/s11051-011-0466-0

Download citation

Keywords

  • Silicon nanoparticles
  • Spark discharge
  • Nanoparticle production
  • Aerosol
  • Synthesis