Skip to main content
Log in

Decomposition processes and structural transformations of cerium propionate into nanocrystalline ceria at different oxygen partial pressures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The structural transformations that occur when thermal treatments turn cerium propionate into nanocrystalline ceria have been analysed with thermoanalytical techniques (TG, DTA and MS) and with structural and magnetic characterization (HRTEM, SQUID and XRD) of the final and intermediate products. Attention has been paid to what occurs during the decomposition of propionate and how the process is affected by the furnace atmosphere (oxidizing or inert). In an oxidizing atmosphere, the decomposition of cerium propionate is triggered by the oxidation of Ce3+ to Ce4+. This reaction entails the loss of large unoxidized propionate fragments of the propionate ligands. As decomposition proceeds, the carbonaceous residue makes the oxygen transport inside the material more difficult and decomposition becomes diffusion limited. At this point, extensive oxidation of the residue begins until it is completely removed. Crystallization of CeO2 occurs simultaneously with decomposition. In these conditions, crystalline nanoparticles (diameter of 3–5 nm) can be obtained at a temperature as low as 300 °C. In an inert atmosphere, decomposition occurs in three steps. During the first step, one of the three propionate ligands is lost, with little oxidation of Ce3+, and is substituted by a hydroxyl group. The second step entails the loss of the remaining ligands with a substantial oxidation of Ce3+ to Ce4+. After this step, the intermediate product is, proposed as, a mixture of amorphous Ce(OH)3 and Ce(OH)4. Finally, the third step leads to conversion of the Ce hydroxide into crystalline CeO2. In an inert atmosphere, the process is less reproducible than in air and a carbonaceous residue remains in the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abanades S, Flamant G (2006) Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol Energy 80:1611–1623

    Article  CAS  Google Scholar 

  • Carretero-Genevrier A, Gazquez J, Puig T, Mestres N, Sandiumenge F, Obradors X, Ferain E (2010) Vertical (La,Sr)MnO3 nanorods from track-etched polymers directly buffering substrates. Adv Funct Mater 20:892–897

    Article  CAS  Google Scholar 

  • Coll M, Gazquez J, Sandiumenge F, Puig T, Obradors X, Espinos JP, Huhne R (2008) Nanostructural control in solution-derived epitaxial Ce1-xGdxO2-y films. Nanotechnology 19:395601

    Article  Google Scholar 

  • Dutta P, Pal S, Seehra MS, Shi Y, Eyring EM, Ernst RD (2006) Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chem Mater 18:5144–5146

    Article  CAS  Google Scholar 

  • Farjas J, Butchosa N, Roura P (2010) A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Therm Anal Calor 102:615–625

    Article  CAS  Google Scholar 

  • Fuentes RO, Baker RT (2009) Synthesis of nanocrystalline CeO2–ZrO2 solid solutions by a citrate complexation route: a thermochemical and structural study. J Phys Chem C 113:914–924

    Article  CAS  Google Scholar 

  • Gibert M, Puig T, Obradors X, Benedetti A, Sandiumenge F, Huhne R (2007) Self-organization of heteroepitaxial CeO2 nanodots grown from chemical solutions. Adv Mater 19:3937

    Article  CAS  Google Scholar 

  • Goyal A, Parans Paranthaman M, Schoop U (2004) The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull 29:552–561

    Article  CAS  Google Scholar 

  • Izu N, Shin W, Murayama N (2003) Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sens Actuators B 93:449–453

    Article  Google Scholar 

  • Jander W (1927) Reactions in solid states at room temperature I Announcement the rate of reaction in endothermic conversions. Zeitschrift Fur Anorganische Und Allgemeine Chemie 163(1–2):1–30

    CAS  Google Scholar 

  • Hu J-D, Li Y-X, Zhou X-Z, Cai M-X (2007) Preparation and characterization of ceria nanoparticles using crystalline hydrate cerium propionate as precursor. Mater Lett 61:4989

    Article  CAS  Google Scholar 

  • Kim M, Hinklin TR, Laine RM (2008) Core-shell nanostructured nanopowders along (CeOx)(x)(Al2O3)(1-x) tie-line by liquid-feed flame spray pyrolysis (LF-FSP). Chem Mater 20:5154–5162

    Article  CAS  Google Scholar 

  • Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695

    Article  CAS  Google Scholar 

  • Linde David R (ed) (2008) CRC handbook of chemistry and physics, Chapter 5, 88th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Llordes A, Zalamova K, Ricart S, Palau A, Pomar A, Puig T, Hardy A, van Bael MK, Obradors X (2010) Evolution of metal-trifluoroacetate precursors in the thermal decomposition toward high-performance YBa2Cu3O7 superconducting films. Chem Mater 22:1686–1964

    Article  CAS  Google Scholar 

  • Mansour SAA (1996) Thermoanalytical investigations of the decomposition course of copper oxysalts.3. Copper(II) acetate monohydrate. J Therm Anal 46:263–274

    Article  CAS  Google Scholar 

  • Masson S, Holliman P, Kalaji M, Kluson P (2009) The production of nanoparticulate ceria using reverse micelle sol gel techniques. J Mater Chem 19:3517–3522

    Article  CAS  Google Scholar 

  • Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651

    Article  CAS  Google Scholar 

  • Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W (2010) Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21:035102

    Article  Google Scholar 

  • Roura P, Farjas J (2005) Analysis of the sensitivity and sample-furnace thermal-lag of a differential thermal analyzer. Thermochim Acta 430:115–122

    Article  CAS  Google Scholar 

  • Rupich MW, Verebelyi DT, Zhang W, Kodenkandath T, Li X (2004) Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull 29:572–578

    Article  CAS  Google Scholar 

  • Sandiumenge F, Cavallaro A, Gazquez J, Puig T, Obradors X, Arbiol J, Freyhardt HC (2005) Mechanisms of nanostructural and morphological evolution of CeO2 functional films by chemical solution deposition. Nanotechnology 16:1809–1813

    Article  CAS  Google Scholar 

  • Schwartz R, Schneller T, Waser R (2004) Chemical solution deposition of electronic oxide films. C R Chimie 7:433–461

    Article  CAS  Google Scholar 

  • Shih SJ, Borisenko KB, Liu LJ, Chen CY (2010) Multiporous ceria nanoparticles prepared by spray pyrolysis. J Nanopart Res 12:1553–1559

    Article  CAS  Google Scholar 

  • Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev Sci Eng 38:439–520

    Article  CAS  Google Scholar 

  • Vlad VR, Zalamova K, Coll M, Pomar A, Palau A, Gutierrez J, Puig T, Obradors X, Usoskin A (2009) Growth of chemical solution deposited (YBCO)-Y-TFA/(MOD)(Ce, Zr)O-2/(ABAD)YSZ/SS coated conductors. IEEE Trans Appl Supercond 19:3212

    Article  CAS  Google Scholar 

  • Wang S, Gu F, Li Ch, Cao H (2007) Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures. J Cryst Growth 307:386–394

    Article  CAS  Google Scholar 

  • Zabaleta J, Mestres N, Abellan P, Gibert M, Sandiumenge F, Puig T, Obradors X (2010) Orientational ordering of solution derived epitaxial Gd-doped ceria nanowires induced by nanoscratching. Nanotechnology 21:025302

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from MICINN (MAT2009-08385, MAT2008-01022, Consolider Project NANOSELECT: CSD2007-00041), EU project NESPA-RTN and by the Generalitat de Catalunya (Catalan Pla de Recerca 2009SGR-185, 2009-SGR-770 and XaRMAE). We are grateful to X. Micharet, D. Morata and A. Senkiv for their collaboration in the thermoanalytical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Roura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roura, P., Farjas, J., Camps, J. et al. Decomposition processes and structural transformations of cerium propionate into nanocrystalline ceria at different oxygen partial pressures. J Nanopart Res 13, 4085–4096 (2011). https://doi.org/10.1007/s11051-011-0352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0352-9

Keywords

Navigation