Skip to main content
Log in

Estimation of particle size distributions obtained by gas phase processes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles intended for high value added applications often require special size distributions. Based on model calculations, this article compares the particle size distributions obtained with conventional and plasma processes. The model is based on an estimation of the probability for collisions; either for neutral or equally charged particles, whereas the growth of the particles is calculated using a model derived from Markov chains. The results of these calculations confirm the empirical knowledge that, under the special conditions of particles carrying electric charges of equal sign, plasma processes deliver products with the narrowest particle size distribution. Synthesis of extremely small particles with conventional processes leads to a significant residue of unreacted precursor. This finding is important in cases of expensive educts. The results of these model calculations are in perfect agreement with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Albriet B, Sartelet KN, Lacour S, Carissimo B, Seigneur C (2010) Modeling aerosol number distributions from a vehicle exhaust with an aerosol CFD model. Atmos Environ 44:1126–1137

    Article  CAS  Google Scholar 

  • Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120–129

    Article  Google Scholar 

  • Binder K (1979) Monte Carlo methods in statistical physics. Springer, Berlin

    Google Scholar 

  • Dang H, Swihart MT (2009) Computational modeling of silicon nanoparticle synthesis: II. A two-dimensional bivariate model for silicon nanoparticle synthesis in a laser-driven reactor including finite-rate coalescence. Aerosol Sci Technol 43:554–569

    Article  CAS  Google Scholar 

  • Dijken A, van Makkinje J, Meijerink A (2001) The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles. J Lumin 92:323–328

    Article  Google Scholar 

  • Fiedler SL, Izvekov S, Angela Violi A (2007) The effect of temperature on nanoparticle clustering. Carbon 45:1786–1794

    Article  CAS  Google Scholar 

  • Levin DA, Peres Y, Wilmer EL (2009) Markov chains and mixing times. Am Math Soc, USA, pp 1–45

    Google Scholar 

  • MacDonald AD (1966) Microwave breakdown in gases. Wiley, New York

    Google Scholar 

  • Matsui I (2006) Preparation of magnetic nanoparticles by pulsed plasma vapor synthesis. J Nanopart Res 8:429–443

    Article  CAS  Google Scholar 

  • Nitsche R, Rodewald M, Skandan G, Fuess H, Hahn H (1996) HRTEM study of nanocrystalline zirconia powders. NanoStr Mater 7:535–546

    Article  CAS  Google Scholar 

  • Paur HR, Baumann W, Mätzing H, Seifert H (2005) Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation. Nanotechnology 16:S354–S361

    Article  Google Scholar 

  • Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578–15581

    Article  CAS  Google Scholar 

  • Tekna Plasma Systems Inc. Canada (2007). http//www.tekna.com

  • Vollath D (2008) Nanomaterials—an introduction to synthesis, properties, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Vollath D, Szabó DV (2006) The microwave plasma process—a versatile process to synthesize nanoparticulate materials. J Nanopart Res 8:417–428

    Article  CAS  Google Scholar 

  • Vollath D, Szabó DV, Taylor RD, Willis JO, Sickafus KE (1995) Synthesis and properties of nanocrystalline superparamagnetic γ-Fe2O3. Nanostruct Mater 6:941–944

    Article  Google Scholar 

  • Vollath D, Szabo DV, Taylor RD, Willis JO (1997) Synthesis and magnetic properties of nanostructured maghemite. J Mater Res 12:2175–2182

    Article  CAS  Google Scholar 

  • Wang G, Garrick SC (2005) Modeling and simulation of Titania synthesis in two-dimensional methane—air flames. J Nanopart Res 7:621–632

    Article  CAS  Google Scholar 

  • Wang G, Garrick SC (2006) Modeling and simulation of Titania formation and growth in temporal mixing layers. Aerosol Sci 37:431–451

    Article  CAS  Google Scholar 

  • Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532

    Article  CAS  Google Scholar 

  • Widiyastuti W, Purwanto A, Wang WN, Iskandar F, Setyawan H, Okuyama K (2009) Nanoparticle formation through solid-fed flame synthesis: experiment and modelling. Particle Technol 55:885–895

    CAS  Google Scholar 

  • Widiyastuti W, Hidayat D, Purwanto A, Iskandar F, Okuyama K (2010) Particle dynamics simulation of nanoparticle formation in a flame reactor using a polydispersed submicron-sized solid precursor. Chem Eng J 158:362–367

    Article  CAS  Google Scholar 

  • Yu M, Lin J, Chan T (2008) Numerical simulation of nanoparticle synthesis in diffusion flame reactor. Powder Technol 181:9–20

    Article  CAS  Google Scholar 

  • Zieman PJ, Kittelson DB, McMurry PH (1996) Effect of particle shape and chemical composition on the electron impact charging properties of submicron inorganic particles. J Aerosol Sci 27:587–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Vollath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollath, D. Estimation of particle size distributions obtained by gas phase processes. J Nanopart Res 13, 3899–3909 (2011). https://doi.org/10.1007/s11051-011-0343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0343-x

Keywords

Navigation