Skip to main content
Log in

Manipulation of subwavelength optical fields and resonant field enhancements of a silver-shell nanocylinder pair and chain waveguides with different core–shell patterns

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Near field optical properties and surface plasmon resonances on a pair of silver-shell nanocylinder and nanochain waveguides with different core–shell patterns which interact with incident plane wave along chain axis are numerically investigated by using the finite element method. Simulation results show that the peak wavelengths and resonant field enhancements are highly tunable by using the nanoshell particles instead of solid ones, revealing a critical relationship among the wavelengths and illuminated direction of incident light, interparticle spacing, radii, and medium of dielectric holes and the patterns of chain waveguides. Besides, nanochain waveguides with different patterns of core–shell that are operated on resonant multipolar modes can provide higher propagation intensities and the transmission ability can be increased by decreasing the size of nanocylinders along the chain axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ballav M, Chowdhury AR (2006) On a study of diffraction and dispersion managed soliton in a cylindrical media. Prog Electromagn Res PIER 63:33–50

    Article  Google Scholar 

  • Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2007) Strong coupling of single emitters to surface plasmons. Phys Rev B 76:035420

    Article  Google Scholar 

  • Chau YF, Tsai DP (2007) Three dimensional analysis of silver nano particles doping effects on super resolution near-field structure. Opt Commun 269:389–394

    Article  CAS  Google Scholar 

  • Chau YF, Yang TJ, Tsai DP (2004) Imaging properties of three dimensional aperture near-field scanning optical microscopy and optimized near-field fiber probe designs. Jpn J Appl Phys 43:8115–8125

    Article  CAS  Google Scholar 

  • Chau YF, Yeh HH, Tsai DP (2006) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561

    Article  Google Scholar 

  • Chen Y, Wang Y, Zhang Y, Liu S (2008) Numerical investigation of the transmission enhancement through subwavelength hole array. Opt Commun 274:236–240

    Article  Google Scholar 

  • Christian G, Romain Q (2004) Near-field optical transmittance of metal particle chain waveguides. Opt Express 12:6141–6146

    Article  Google Scholar 

  • COMSOL Multiphysics V4.1 (2010). http://www.comsol.com

  • Gao Z, Zhang XF, Shen LF (2010) Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. J Appl Phys 108:113104

    Article  Google Scholar 

  • Ghenuche P, Quidant R, Badenes G (2005) Cumulative plasmon field enhancement in finite metal particle chains. Opt Lett 30:1882–1884

    Article  Google Scholar 

  • Gresho, Sani RL (2000) Incompressible flow and finite element method, vol 1 and 2. Wiley, New York

    Google Scholar 

  • Hernandez JV, Noordam LD, Robicheaux F (2005) Asymmetric response in a line of optically driven metallic nanospheres. J Phys Chem B109:15808–15811

    Google Scholar 

  • Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82:257–259

    Article  CAS  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, New York

    Google Scholar 

  • Krenn JR, Dereux A, Weeber JC, Bourillot E, Lacroute Y, Goudnnet JP (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82:2590–2593

    Article  CAS  Google Scholar 

  • Maier SA (2005) Plasmonics—towards subwavelength optical devices. Curr Nanosci 1:17–22

    Article  CAS  Google Scholar 

  • Mitatha S (2009) Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications. Prog Electromagn Res PIER 99:383–404

    Article  Google Scholar 

  • Nordlander P, Oubre C (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:5899–5903

    Google Scholar 

  • Okamoto T, Kawata S (eds) (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin, p 99

    Google Scholar 

  • Ozbay E (2005) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  Google Scholar 

  • Raether H (1998) Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, vol 3. Springer-Verlag, Berlin

    Google Scholar 

  • Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625

    Article  Google Scholar 

  • Shen LF, Yang TJ, Chau YF (2007) A 50/50 beam splitter using a one-dimensional metal photonic crystal with a parabola-like dispersion behavior. Appl Phys Lett 90:251909

    Article  Google Scholar 

  • Shen LF, Yang TJ, Chau YF (2008) Effect of internal period on the optical dispersion of indefinite-medium materials. Phys Rev B 77:205124

    Article  Google Scholar 

  • Sweatlock LA, Maier SA, Atwater HA, Penninkhof JJ, Polman A (2005) Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B 71:235408

    Article  Google Scholar 

  • Vlasov Y, Green WMJ, Xia F (2008) High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics 2:242–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from National Science Council, Taiwan, ROC, under Grant number NSC 99-2112-M-231-001-MY3 and NSC-99-2120-M-002-012. They would also like to thank National Center for High-Performance Computing for support by providing computing facility and software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fong Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, YF., Li, HY., Jiang, ZH. et al. Manipulation of subwavelength optical fields and resonant field enhancements of a silver-shell nanocylinder pair and chain waveguides with different core–shell patterns. J Nanopart Res 13, 3939–3949 (2011). https://doi.org/10.1007/s11051-011-0316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0316-0

Keywords

Navigation