Skip to main content

Effects of temperature and humidity on electrospun conductive nanofibers based on polyaniline blends

Abstract

This study focuses and discusses the effects of temperature and humidity on electrospun conductive nanofibers, made with different polymer blends, deposited directly on interdigitated electrodes. The selected conductive polymers were based on blends of polyaniline emeraldine salt form and three different carrier hosting polymers: polyvinilpyrrolidone, polystyrene, and polyethylene oxide respectively. The obtained fibrous layers were investigated by the electrical measurements and morphological analysis (scanning electron microscopy). The study was made on the correlation between the electrical changes and morphological discrepancies due to temperature treatment. Moreover, this article reports the effects of relative humidity variations on electrical parameters. Since polyaniline is a well-known sensing material for different gases and volatile organic compounds, this study could be considered a supportive study for employing of the mentioned polymer blends as chemical interactive materials in gas sensor applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aderson DA, Freeman ES (1961) The kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci 54:253–260. doi:10.1002/pol.1961.1205415920

    Article  Google Scholar 

  2. Blazquez E, Mustarelli P, Pasini D, Righetti PP, Tomasi C (2004) Thermal and conductivity properties of poly(ethylene glycol) based cyclopolymers. J Mater Chem 14:2524–2529. doi:10.1039/b402677b

    Article  CAS  Google Scholar 

  3. Conklin JA, Huang SC, Huang SM, Wen T, Kaner RB (1995) Thermal properties of polyaniline and poly(aniline-co-o-ethylaniline). Macromolecules 28:6522–6527. doi:10.1021/ma00123a019

    Article  CAS  Google Scholar 

  4. De Cesare F, Pantalei S, Zampetti E, Macagnano A (2008) Electronic nose and SPME techniques to monitor phenanthrene biodegradation in soil. Sens Actuators B 131:63–70. doi:10.1016/j.snb.2007.12.012

    Article  Google Scholar 

  5. Debarnot DN, Epaillard FP (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta 475:1–15. doi:10.1016/S0003-2670(02)01229-1

    Article  Google Scholar 

  6. Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9:1609–1624. doi:10.3390/s90301609

    Article  CAS  Google Scholar 

  7. Dong G, Xiao X, Liu X, Qian B, Ma Z, Ye S, Chen D, Qiu J (2010) Preparation and characterization of Ag nanoparticle embedded polymer electrospun nanofibers. J Nanopart Res 12:1319–1329. doi:10.1007/s11051-009-9665-3

    Article  CAS  Google Scholar 

  8. Fang Q, Chetwynd DG, Covington JA, Toh CS, Gardner JW (2002) Micro-gas-sensor with conducting polymers. Sens Actuators B 84:66–71. doi:10.1016/S0925-4005(01)01076-0

    Article  Google Scholar 

  9. Gardner JW, Shin HW, Hines EL (2000) An electronic nose system to diagnose illness. Sens Actuators B 70:19–24. doi:10.1016/S0925-4005(00)00548-7

    Article  Google Scholar 

  10. Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754. doi:10.1021/ja048648p

    Article  CAS  Google Scholar 

  11. Haaf F, Sanner A, Straub F (1985) Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym J 17:143–152. doi:10.1295/polymj.17.143

    Article  CAS  Google Scholar 

  12. Hao Q, Kulikov V, Mirsky VM (2003) Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique. Sens Actuators B 94:352–357. doi:10.1016/S0925-4005(03)00456-8

    Article  Google Scholar 

  13. Hosseini SH, Entezami AA (2001) Preparation and characterization of polyaniline blends with polyvinyl acetate, polystyrene and polyvinyl chloride for toxic gas sensors. Polym Adv Technol 12:482–493. doi:10.1002/pat.107

    Article  CAS  Google Scholar 

  14. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223. doi:10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  15. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2:19–24. doi:10.1038/nmat768

    Article  CAS  Google Scholar 

  16. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161. doi:10.1002/adma.200304955

    Article  CAS  Google Scholar 

  17. Lakin KM (1974) Electrode resistance effects in interdigital transducers. IEEE Trans Microw Theory Tech 22:418–424

    Article  CAS  Google Scholar 

  18. Li P, Li Y, Ying B, Yang M (2009) Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sens Actuators B 141:390–395. doi:10.1016/j.snb.2009.07.006

    Article  Google Scholar 

  19. Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4:671–675. doi:10.1021/nl049826f

    Article  CAS  Google Scholar 

  20. Macagnano A, Zampetti E, Pantalei S, et al (2009) Array of nanofibrous polyaniline-based sensors with different chemostructural assembling. AIP Conference Proceedings, ISBN: 978-0-7354-0674-2, 1137: 373–376

  21. Madler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, Pratsinis SE (2006) Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res 8:783–796. doi:10.1007/s11051-005-9029-6

    Article  Google Scholar 

  22. Mark JE (2007) Physical properties of polymers handbook. Springer, Berlin

    Book  Google Scholar 

  23. Norris ID, Shaker MM, Ko F, MacDiarmid AG (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114:109. doi:10.1016/S0379-6779(00)00217-4

    Article  CAS  Google Scholar 

  24. Pearce R, Vancso GJ (1997) Imaging of melting and crystallization of poly(ethylene oxide) in real-time by hot-stage atomic force microscopy. Macromolecules 30:5843–5848. doi:10.1021/ma970463y

    Article  CAS  Google Scholar 

  25. Ramakrishna S, Fujihara K, Teo WE, Yong T, Zuwei Ma, Ramakrishna R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. doi:10.1016/S1369-7021(06)71389-X

    Article  CAS  Google Scholar 

  26. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216. doi:10.1088/0957-4484/7/3/009

    Article  CAS  Google Scholar 

  27. Rieger J (1996) The glass transition temperature of polystyrene results of a round robin test. J Therm Anal Calorim 46:965–972. doi:10.1007/BF01983614

    Article  CAS  Google Scholar 

  28. Smith JA, Josowicz M, Janata J (2003) Polyaniline-gold nanocomposite system. J Electrochem Soc 150:E384–E388. doi:10.1149/1.1589762

    Article  CAS  Google Scholar 

  29. Zampetti E, Pantalei S, Pecora A, Valletta A, Maiolo L, Minotti A, Macagnano A, Fortunato G, Bearzotti A (2009) Design and optimization of an ultra thin flexible capacitive humidity sensor. Sens Actuators B 143:302–307. doi:10.1016/j.snb.2009.09.004

    Article  Google Scholar 

  30. Zampetti E, Pantalei S, Scalese S, Bearzotti A, De Cesare F, Spinella C, Macagnano A (2011) Biomimetic sensing layer based on electrospun conductive polymer webs. Biosens Bioelectron 26:2460–2465. doi:10.1016/j.bios.2010.10.032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the technical staff of the MIR Medical International Research S.r.l for their support and, in particular, Ing. Paolo Boschetti Sacco. This study was partially financed by MIR in the framework of the project “NOESIS” FILAS Regione Lazio–Bando DTB 2009-2011.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Zampetti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zampetti, E., Muzyczuk, A., Macagnano, A. et al. Effects of temperature and humidity on electrospun conductive nanofibers based on polyaniline blends. J Nanopart Res 13, 6193–6200 (2011). https://doi.org/10.1007/s11051-011-0310-6

Download citation

Keywords

  • Nanofibers
  • Conductive polymers
  • Electrospinning
  • Sensor
  • Temperature treatment
  • Humidity
  • Polyaniline