Skip to main content
Log in

Reaction mechanism studies for platinum nanoparticle growth by atomic layer deposition

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mass spectrometry is used to study the reaction mechanism of platinum (Pt) atomic layer deposition (ALD) on large quantities of high surface area silica gel particles in a fluidized bed reactor. (Methylcyclopentadienyl)trimethylplatinum [(MeCp)PtMe3] and oxygen are used as precursors. Studies are conducted at a substrate temperature of 320 °C. The self-limiting behavior of ALD appears to be disrupted with overexposure of Pt precursor. The amount of the deposited Pt and the size of the Pt nanoparticles increase with an increasing overdose time of Pt precursor. This can be explained by the thermal decomposition of Pt precursor at the reaction temperature of 320 °C and the in situ sintering of Pt nanoparticles forming larger particles. This finding is significant and its understanding is essential for better control of Pt deposition to achieve desirable morphological and structural properties for different application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaltonen T, Rahtu A, Ritala M, Leskela M (2003a) Reaction mechanism studies on atomic layer deposition of ruthenium and platinum. Electrochem Solid State Lett 6:C130–C133

    Article  CAS  Google Scholar 

  • Aaltonen T, Ritala M, Sajavaara T, Keinonen J, Leskela M (2003b) Atomic layer deposition of platinum thin films. Chem Mater 15:1924–1928

    Article  CAS  Google Scholar 

  • Aaltonen T, Ritala M, Tung YL, Chi Y, Arstila K, Meinander K, Leskela M (2004) Atomic layer deposition of noble metals: exploration of the low limit of the deposition temperature. J Mater Res 19:3353–3358

    Article  CAS  Google Scholar 

  • Andreazza P, Andreazza-Vignolle C, Rozenbaum JP, Thomann AL, Brault P (2002) Nucleation and initial growth of platinum islands by plasma sputter deposition. Surf Coat Technol 151:122–127

    Article  Google Scholar 

  • Christensen ST, Elam JW (2010) Atomic layer deposition of Ir-Pt alloy films. Chem Mater 22:2517–2525

    Article  CAS  Google Scholar 

  • Elliott SD (2010) Mechanism, products, and growth rate of atomic layer deposition of noble metals. Langmuir 26:9179–9182

    Article  CAS  Google Scholar 

  • Jiang XR, Huang H, Prinz FB, Bent SF (2008) Application of atomic layer deposition of platinum to solid oxide fuel cells. Chem Mater 20:3897–3905

    Article  CAS  Google Scholar 

  • Kessels WMM, Knoops HCM, Dielissen SAF, Mackus AJM, van de Sanden MCM (2009) Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy. Appl Phys Lett 95:013114

    Article  Google Scholar 

  • King DM, Liang XH, Carney CS, Hakim LF, Li P, Weimer AW (2008a) Atomic layer deposition of UV-absorbing ZnO films on SiO2 and TiO2 nanoparticles using a fluidized bed reactor. Adv Funct Mater 18:607–615

    Article  CAS  Google Scholar 

  • King DM, Liang XH, Li P, Weimer AW (2008b) Low-temperature atomic layer deposition of ZnO films on particles in a fluidized bed reactor. Thin Solid Films 516:8517–8523

    Article  CAS  Google Scholar 

  • King JS, Wittstock A, Biener J, Kucheyev SO, Wang YM, Baumann TF, Giri SK, Hamza AV, Baeumer M, Bent SF (2008c) Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. Nano Lett 8:2405–2409

    Article  CAS  Google Scholar 

  • Li JH, Liang XH, King DM, Jiang YB, Weimer AW (2010) Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition. Appl Catal B 97:220–226

    Article  CAS  Google Scholar 

  • Liang XH, Hakim LF, Zhan GD, McCormick JA, George SM, Weimer AW, Spencer JA, Buechler KJ, Blackson J, Wood CJ, Dorgan JR (2007) Novel processing to produce polymer/ceramic nanocomposites by atomic layer deposition. J Am Ceram Soc 90:57–63

    Article  CAS  Google Scholar 

  • Liang XH, King DM, Li P, George SM, Weimer AW (2009) Nanocoating hybrid polymer films on large quantities of cohesive nanoparticles by molecular layer deposition. AIChE J 55:1030–1039

    Article  CAS  Google Scholar 

  • Liang XH, Barrett KS, Jiang YB, Weimer AW (2010) Rapid silica atomic layer deposition on large quantities of cohesive nanoparticles. ACS Appl Mater Interfaces 2:2248–2253

    Article  CAS  Google Scholar 

  • Matsushima T, Almy DB, White JM (1977) Reactivity and auger chemical-shift of oxygen adsorbed on platinum. Surf Sci 67:89–108

    Article  CAS  Google Scholar 

  • Setthapun W, Williams WD, Kim SM, Feng H, Elam JW, Rabuffetti FA, Poeppelmeier KR, Stair PC, Stach EA, Ribeiro FH, Miller JT, Marshall CL (2010) Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in situ XAFS analysis and water-gas shift reaction. J Phys Chem C 114:9758–9771

    Article  CAS  Google Scholar 

  • Zhou Y, King DM, Liang XH, Li JH, Weimer AW (2010) Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition. Appl Catal B 101:54–60

    Article  CAS  Google Scholar 

  • Zhu Y, Dunn KA, Kaloyeros AE (2007) Properties of ultrathin platinum deposited by atomic layer deposition for nanoscale copper-metallization schemes. J Mater Res 22:1292–1298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Weimer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Zhou, Y., Li, J. et al. Reaction mechanism studies for platinum nanoparticle growth by atomic layer deposition. J Nanopart Res 13, 3781–3788 (2011). https://doi.org/10.1007/s11051-011-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0299-x

Keywords

Navigation