Skip to main content
Log in

Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A small quantity of tributylphosphine was employed to improve the surface state of fresh and oxidized PbSe nanocrystals after the formation of nanocrystals. Experimental results showed that the photoluminescence intensity increased in both situations. However, an excessive amount of tributylphosphine exhibited negative effects of decreasing photoluminescence and particle aggregation. A suitable amount of tributylphosphine added before the synthesis of a CdSe shell on PbSe core (PbSe/CdSe) also exhibited a photoluminescence intensity increase for these core/shell nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel KA, Shan J, Boyer JC, Harris F, Veggel FCJM (2008) Highly photoluminescent PbS nanocrystals: the beneficial effect of trioctylphosphine. Chem Mater 20:3794–3796

    Article  CAS  Google Scholar 

  • An JM, Franceschetti A, Zunger A (2007) Electron and hole addition energies in PbSe quantum dots. Phys Rev B 76:045401/1–7

    Google Scholar 

  • Bao H, Habenicht BF, Prezhdo OV, Ruan X (2009) Temperature dependence of hot-carrier relaxation in PbSe nanocrystals: an ab initio study. Phys Rev B 79:235306/1–7

    Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  • Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  • Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357

    Article  CAS  Google Scholar 

  • Dai Q, Wang Y, Li X, Zhang Y, Pellegrino DJ, Zhao M, Zou B, Seo J, Wang Y, Yu WW (2009a) Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals. ACS Nano 3:1518–1524

    Article  CAS  Google Scholar 

  • Dai Q, Wang Y, Zhang Y, Li X, Li R, Zou B, Seo J, Wang Y, Liu M, Yu WW (2009b) Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure. Langmiur 25:12320–12324

    Article  CAS  Google Scholar 

  • Du H, Chen C, Krishnan R, Krauss TD, Harbold JM, Wise FW, Thomas MG, Silcox J (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2:1321–1324

    Article  CAS  Google Scholar 

  • Empedocles SA, Bawendi MG (1997) Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278:2114–2117

    Article  CAS  Google Scholar 

  • Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98:249–257

    Article  CAS  Google Scholar 

  • Hanrath T, Veldman D, Choi JJ, Christova CG, Wienk MM, Janssen RAJ (2009) PbSe nanocrystal network formation during pyridine ligand displacement. Appl Mater Interfaces 1:244–250

    Article  CAS  Google Scholar 

  • Jasieniak J, Mulvaney P (2007) From Cd-rich to Se-rich—the manipulation of CdSe nanocrystal surface stoichiometry. J Am Chem Soc 129:2841–2848

    Article  CAS  Google Scholar 

  • Joo J, Pietryga JM, McGuire JA, Jeon S, Williams DJ, Wang H, Klimov VI (2009) A reduction pathway in the synthesis of PbSe nanocrystal quantum dots. J Am Chem Soc 131:10620–10628

    Article  CAS  Google Scholar 

  • Law M, Beard MC, Choi S, Luther JM, Hanna MC, Nozik AJ (2008) Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Lett 8:3904–3910

    Article  CAS  Google Scholar 

  • Lee HA, Imran M, Monteiro-Riviere NA, Colvin VL, Yu WW, Riviere JE (2007) Biodistribution of quantum dot nanoparticles in perfused skin: evidence of coating dependency and periodicity in arterial extraction. Nano Lett 7:2865–2870

    Article  CAS  Google Scholar 

  • Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567–12575

    Article  CAS  Google Scholar 

  • Liptay TJ, Ram RJ (2006) Temperature dependence of the exciton transition in semiconductor quantum dots. Appl Phys Lett 89:223132/1–3

    Google Scholar 

  • Liu H, Owen JS, Alivisatos AP (2007) Mechanistic study of precursor evolution in colloidal group II–VI semiconductor nanocrystal synthesis. J Am Chem Soc 129:305–312

    Article  CAS  Google Scholar 

  • Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8:3488–3492

    Article  CAS  Google Scholar 

  • McDonald SA, Konstantatos G, Zhang SG, Zhang SG, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142

    Article  CAS  Google Scholar 

  • Moreels I, Fritzinger B, Martins JC, Hens Z (2008) Surface chemistry of colloidal PbSe nanocrystals. J Am Chem Soc 130:15081–15086

    Article  CAS  Google Scholar 

  • Murray CB, Sun S, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45:47–56

    Article  CAS  Google Scholar 

  • Olkhovets A, Hsu R-C, Lipovskii A, Wise FW (1998) Size-dependent temperature variation of the energy gap in lead-salt quantum dots. Phys Rev Lett 81:3539–3542

    Article  CAS  Google Scholar 

  • Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollongsworth JA (2004) Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc 126:11752–11753

    Article  CAS  Google Scholar 

  • Pietryga JM, Werder DJ, Williams DJ, Casson JL, Schaller RD, Klimov VI, Hollongsworth JA (2008) Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J Am Chem Soc 130:4879–4885

    Article  CAS  Google Scholar 

  • Qian L, Bera D, Tseng T, Holloway PH (2009) High efficiency photoluminescence from silica-coated CdSe quantum dots. Appl Phys Lett 94:073112/1–3

    Google Scholar 

  • Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601/1–4

    Google Scholar 

  • Steckel JS, Yen BKH, Oertel DC, Bawendi MG (2006) On the mechanism of lead chalcogenide nanocrystal formation. J Am Chem Soc 128:13032–13033

    Article  CAS  Google Scholar 

  • Stouwdam JW, Shan J, van Veggel FCJM (2007) Photostability of colloidal PbSe and PbSe/PbS core/shell nanocrystals in solution and in the solid state. J Phys Chem C 111:1086–1092

    Article  CAS  Google Scholar 

  • Sun Q, Wang YA, Li L, Wang D, Zhu T, Xu J, Yang C, Li Y (2007) Bright, multicoloured light-emitting diodes based on quantum dots. Nat Photonics 1:717–722

    Article  CAS  Google Scholar 

  • Sundar VC, Lee J, Heine JR, Bawendi MG, Jensen KF (2000) Full color emission from II–VI semiconductor quantum dot-polymer composites. Adv Mater 12:1102–1105

    Article  Google Scholar 

  • Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89

    Article  CAS  Google Scholar 

  • Wehrenberg BL, Wang C, Guyot-Sionnest P (2002) Interband and intraband optical studies of PbSe colloidal quantum dots. J Phys Chem B 106:10634–10640

    Article  CAS  Google Scholar 

  • Wise FW (2000) Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res 33:773–780

    Article  CAS  Google Scholar 

  • Yu WW (2008) Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications. Expert Opin Biol Ther 8:1571–1581

    Article  CAS  Google Scholar 

  • Yu WW, Peng X (2002) Formation of high quality CdS and other II–VI semiconductor nanocrystals in non-coordinating solvent, tunable reactivity of monomers. Angew Chem Int Ed 41:2368–2371

    Article  CAS  Google Scholar 

  • Yu WW, Qu L, Guo W, Peng X (2003a) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:1854–1860

    Google Scholar 

  • Yu WW, Wang YA, Peng X (2003b) Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem Mater 15:4300–4308

    Article  CAS  Google Scholar 

  • Yu WW, Falkner JC, Shih BS, Colvin VL (2004) Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem Mater 16:3318–3322

    Article  CAS  Google Scholar 

  • Yu WW, Chang E, Drezek R, Colvin VL (2006) Stable and bright water-soluble quantum dots. J Biomed Nanotechnol 2:225–228

    Article  CAS  Google Scholar 

  • Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayer CM, Johns J, Drezek R, Colvin VL (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–2879

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Worcester Polytechnic Institute, the National 863 Projects of China (2007AA03Z112, 2007AA06Z112), and the State Key Laboratory on Integrated Optoelectronics, Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiding Wang or William W. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Dai, Q., Li, X. et al. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals. J Nanopart Res 13, 3721–3729 (2011). https://doi.org/10.1007/s11051-011-0293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0293-3

Keywords

Navigation