Skip to main content
Log in

Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Microwave synthesis was used to produce nanosized transition-metal tungstates in environmentally friendly conditions not yet reported by the literature: 110 and 150 °C, for times of 10 and 20 min. X-ray diffraction evidenced incipient crystallized materials, while transmission electron microscopy indicates nanostructured regions of about 2–5 nm inside an amorphous matrix. Raman spectroscopy was used to probe short-range ordering in the achieved samples and also to obtain a reliable set of spectra containing all the Raman-active bands predicted by group-theory calculations. The vibrational spectra showed no extra feature, indicating that the microwave processing was able to produce short-range ordered materials without tetrahedral distortions. These distortions are frequently reported when commercially modified kitchen microwave units are employed. In this work, the syntheses were conducted in a commercial apparatus especially designed for fully controlled temperature–time–pressure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angloher G, Bruckmayer M, Bucci C, Bühler M, Cooper S, Cozzini C (2002) Limits on WIMP dark matter using sapphire cryogenic detectors. Astropart Phys 18:43–55

    Article  Google Scholar 

  • Bhattacharya AK, Biswas RG, Hartridge A (1997) Environment sensitive impedance spectroscopy and DC conductivity measurements on NiWO4. J Mater Sci 32:353–356

    Article  CAS  Google Scholar 

  • Bradler M, Baum P, Riedle E (2009) Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses. Appl Phys B 97:561–574

    Article  CAS  Google Scholar 

  • Cavalcante LS, Sczancoski JC, Lima LF, Espinosa JWM, Pizani PS, Varela JA, Longo E (2009) Synthesis, characterization anisotropic growth and photoluminescence of BaWO4. Cryst Growth Design 9:1002–1012

    Article  CAS  Google Scholar 

  • Cerny P, Jelinkova H, Zverev PG, Basiev TT (2004) Solid state lasers with Raman frequency conversion. Prog Quantum Electron 28:113–143

    Article  CAS  Google Scholar 

  • Dias A, Ciminelli VST (2001) Thermodynamic calculations and modeling of the hydrothermal synthesis of nickel tungstates. J Eur Ceram Soc 21:2061–2065

    Article  CAS  Google Scholar 

  • Dias A, Ciminelli VST (2003) Electroceramic materials of tailored phase and morphology by hydrothermal technology. Chem Mater 15:1344–1352

    Article  CAS  Google Scholar 

  • Dias A, Moreira RL (2007) Production of Sr-deficient bismuth tantalates from microwave-hydrothermal derived precursors: structural and dielectric properties. J Phys Chem Solids 68:645–649

    Article  CAS  Google Scholar 

  • Dias A, Matinaga FM, Moreira RL (2007) Raman spectroscopy of (Ba1-x Sr x )(Mg1/3Nb2/3)O3 solid solutions from microwave-hydrothermal powders. Chem Mater 19:2335–2341

    Article  CAS  Google Scholar 

  • Faure N, Borel C, Couchaud M, Basset G, Templier R, Wyon C (1996) Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2. Appl Phys B 63:593–598

    CAS  Google Scholar 

  • He HY (2008) Luminescence properties of NiWO4 powders and films prepared with novel methods. Mater Res Innov 12:138–141

    Article  CAS  Google Scholar 

  • Hernandez-Sanchez BA, Boyle TJ, Pratt HD, Rodriguez MA, Brewer LN, Dunphy DR (2008) Morphological and phase controlled tungsten based nanoparticles: synthesis and characterization of scheelite, wolframite, and oxide nanomaterials. Chem Mater 20:6643–6656

    Article  CAS  Google Scholar 

  • Jia GH, Tu CY, You ZY, Li JF, Zhu ZJ, Wang Y, Wu BC (2004) Czochralski technique growth of pure and rare-earth-doped SrWO4 crystals. J Cryst Growth 273:220–225

    Article  CAS  Google Scholar 

  • Kuzmin A, Purans J, Kalendarev R, Pailharey D, Mathey Y (2001) XAS, XDR, AFM and Raman studies of nickel tungstate electrochromic thin films. Electrochim Acta 46:2233–2236

    Article  CAS  Google Scholar 

  • Lei S, Tang K, Fang Z, Huang Y, Zhang H (2005) Synthesis of MnWO4 nanofibres by a surfactant-assisted complexation-precipitation approach and control of morphology. Nanotechnology 16:2407–2411

    Article  CAS  Google Scholar 

  • Mancheva MN, Iordanova RS, Klissurski DG, Tyuliev GT, Kunev BN (2007) Direct mechanochemical synthesis of nanocrystalline NiWO4. J Phys Chem C 111:1101–1104

    Article  CAS  Google Scholar 

  • Moreira RL, Dias A (2005) Polarized micro-Raman spectroscopy of oriented A(B′1/3B′′2/3)O3 powders and microwave ceramics. J Eur Ceram Soc 25:2843–2847

    Article  CAS  Google Scholar 

  • Moreira RL, Andreeta MRB, Hernandes AC, Dias A (2005) Polarized micro-Raman spectroscopy of Ba(Mg1/3Nb2/3)O3 single crystal fibers. Cryst Growth Design 5:1457–1462

    Article  CAS  Google Scholar 

  • Pandey PK, Bhave NS, Kharat RB (2006) Structural, optical, electrical and photovoltaic electrochemical characterization of spray deposited NiWO4 thin films. Electrochim Acta 22:4659–4664

    Article  Google Scholar 

  • Paski EF, Blades MW (1988) Analysis of inorganic powders by time-wavelength resolved luminescence spectroscopy. Anal Chem 60:1224–1230

    Article  CAS  Google Scholar 

  • Phuruangrat A, Thongtem T, Thongtem S (2009) Barium molybdate and barium tungstate nanocrystals synthesized by a cyclic microwave irradiation. J Phys Chem Solids 70:955–959

    Article  CAS  Google Scholar 

  • Pontes FM, Galhiane MS, Santos LS, Petit LA, Kataoka FP, Mabuchi GH, Longo E, Zampieri M, Pizani PS (2009) Polymeric precursor method the synthesis of XWO4 (X = Ca and Sr) thin films-structural, microstructural and spectroscopic investigation. J Alloys Compd 477:608–615

    Article  CAS  Google Scholar 

  • Pullar RC, Farrah S, NMcN Alford (2007) MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J Eur Ceram Soc 27:1059–1063

    Article  CAS  Google Scholar 

  • Rousseau DL, Bauman RP, Porto SPS (1981) Normal mode determination in crystals. J Raman Spectrosc 10:253–290

    Article  CAS  Google Scholar 

  • Ruiz-Fuertes J, López-Moreno S, Errandonea D, Pellicer-Porres J, Lacomba-Perales R, Segura A, Rodríguez-Hernandez P, Munoz A, Romero AH, Gonzalez J (2010) High-pressure phase transitions and compressibility of wolframite-type tungstates. J Appl Phys 107:083506

    Article  Google Scholar 

  • Ryu JH, Yoon JW, Lim CS, Oh WC, Shim KB (2005) Microwave-assisted synthesis of nanocrystalline MWO4 (M: Ca, Ni) via water-based citrate complex precursor. Ceram Int 31:883–888

    Article  CAS  Google Scholar 

  • Sczancoski JC, Cavalcante LS, Joya MR, Espinosa JWM, Pizani PS, Varela JA, Longo E (2009) Synthesis, growth process and photoluminescence properties of SrWO4 powders. J Colloid Int Sci 330:227–236

    Article  CAS  Google Scholar 

  • Shan ZC, Wang YM, Ding HM, Huang FQ (2009) Structure-dependent photocatalytic activities of MWO4 (M = Ca, Sr, Ba). J Molec Catalysis A 302:54–58

    Article  CAS  Google Scholar 

  • Siqueira KPF, Moreira RL, Valadares M, Dias A (2010) Microwave-hydrothermal preparation of alkaline-earth-metal tungstates. J Mater Sci 45:6083–6093

    Google Scholar 

  • Song YS, Chung JH, Park JMS, Choi YN (2009) Stabilization of the elliptical spiral phase and the spin-flop transition in multiferroic Mn1−x Co x WO4. Phys Rev B 79:224415–224420

    Article  Google Scholar 

  • Su YG, Li LP, Li GS (2008) Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem Mater 20:6060–6067

    Article  CAS  Google Scholar 

  • Sundaram R, Nagaraja KS (2004) Electrical and humidity sensing properties of lead(II) tungstate-tungsten(VI) oxide and zinc(II) tungstate-tungsten(VI) oxide composites. Mater Res Bull 39:581–590

    Article  CAS  Google Scholar 

  • Thongtem T, Phuruangrat A, Thongtem S (2008a) Characterization of MeWO4 (Me = Ba, Sr and Ca) nanocrystallines prepared by sonochemical method. Appl Surf Sci 254:7581–7585

    Article  CAS  Google Scholar 

  • Thongtem T, Phuruangrat A, Thongtem S (2008b) Synthesis of CaWO4, SrWO4 and BaWO4 with nanosized particles using cyclic microwave radiation. J Ceram Proc Res 9:258–261

    Google Scholar 

  • Thongtem S, Wannapop S, Phuruangrat A, Thongtem T (2009) Cyclic microwave-assisted spray synthesis of nanostructured MnWO4. Mater Lett 63:833–836

    Article  CAS  Google Scholar 

  • Wang XM, Xu HY, Wang H, Yan H (2005) Morphology-controlled BaWO4 powders via a template-free precipitation technique. J Cryst Growth 284:254–261

    Article  CAS  Google Scholar 

  • Wang R, Lin C, Zeng J, Li KW, Wang H (2009) Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition. J Solid State Chem 182:677–684

    Article  CAS  Google Scholar 

  • Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CAPES, CNPq, FINEP, and FAPEMIG. The authors would like to thank the Center of Microscopy—UFMG for technical support with transmission electron microscopy (TEM and HRTEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, K.P.F., Dias, A. Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy. J Nanopart Res 13, 5927–5933 (2011). https://doi.org/10.1007/s11051-011-0248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0248-8

Keywords

Navigation