Skip to main content
Log in

Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexy P, Lacik I, Simkova B et al (2004) Effect of melt processing on thermo-mechanical degradation of poly(vinyl alcohol)s. Polym Degrad Stab 85:823–830

    Article  CAS  Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490

    Article  CAS  Google Scholar 

  • Araujo J, Gonzalez E, Egea MA et al (2009) Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine 5:394–401

    CAS  Google Scholar 

  • Attama AA, Reichl S, Muller-Goymann CC (2008) Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 355:307–313

    Article  CAS  Google Scholar 

  • Baydoun L, Muller-Goymann CC (2003) Influence of n-octenylsuccinate starch on in vitro permeation of sodium diclofenac across excised porcine cornea in comparison to Voltaren ophtha. Eur J Pharm Biopharm 56:73–79

    Article  CAS  Google Scholar 

  • Bertocchi P, Antoniella E, Valvo L et al (2005) Diclofenac sodium multisource prolonged release tablets-a comparative study on the dissolution profiles. J Pharm Biomed Anal 37:679–685

    Article  CAS  Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: Systematic study of particle size and drug content. Int J Pharm 336:367–375

    Article  CAS  Google Scholar 

  • Castro GA, Coelho AL, Oliveira CA et al (2009) Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int J Pharm 381:77–83

    Article  CAS  Google Scholar 

  • Cui FD, Shi K, Zhang LQ et al (2006) Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release 114:242–250

    Article  CAS  Google Scholar 

  • Galindo-Rodriguez S, Allemann E, Fessi H et al (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion and nanoprecipitation methods. Pharm Res 21:1428–1439

    Article  CAS  Google Scholar 

  • Govender T, Stolnik S, Garnett MC et al (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57:171–185

    Article  CAS  Google Scholar 

  • Haznedar S, Dortunc B (2004) Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. Int J Pharm 269:131–140

    Article  CAS  Google Scholar 

  • Heiati H, Phillips NC, Tawashi R (1996) Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm Res 13:1406–1410

    Article  CAS  Google Scholar 

  • Italia JL, Bhatt DK, Bhardwaj V et al (2007) PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J Control Release 119:197–206

    Article  CAS  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S et al (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109

    Article  CAS  Google Scholar 

  • Kocbek P, Baumgartner S, Kristl J (2006) Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 312:179–186

    Article  CAS  Google Scholar 

  • Liu J, Gong T, Wang CG et al (2007) Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm 340:153–162

    Article  CAS  Google Scholar 

  • Lucks JS, Muller RH (1991) Medication vehicles made of solid lipid particles (solid lipid nanospheres, SLN). EP 0605497

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  Google Scholar 

  • Muchow M, Maincent P, Muller RH (2008) Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 34:1394–1405

    Article  CAS  Google Scholar 

  • Muller RH, Runge SA (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery. In: Benita S (ed) Submicron emulsions in drug targeting and delivery. Harwood Academic Publishers, Amsterdam, pp 219–234

    Google Scholar 

  • Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  CAS  Google Scholar 

  • Muller-Goymann CC (2004) Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur J Pharm Biopharm 58:343–356

    Article  CAS  Google Scholar 

  • Myers D (1999) Surfaces, interfaces and colloids: principles and applications, 2nd edn. Wiley, New York, pp 253–294

    Book  Google Scholar 

  • Pardeike J, Hommoss A, Muller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  CAS  Google Scholar 

  • Patist A, Chhabra V, Pagidipati R et al (1997) Effect of chain length compatibility on micellar stability in sodium dodecyl sulfate/alkyltrimethylammonium bromide solutions. Langmuir 13:432–434

    Article  CAS  Google Scholar 

  • Peltonen L, Aitta J, Hyvonen S et al (2004) Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(l)lactide nanoparticles. AAPS Pharm Sci Tech 5:E16

    Article  Google Scholar 

  • Schubert MA, Harms M, Muller-Goymann CC (2006) Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci 27:226–236

    Article  CAS  Google Scholar 

  • Shah KA, Date AA, Joshi MD et al (2007) Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm 345:163–171

    Article  CAS  Google Scholar 

  • Shahgaldian P, Da Silva E, Colemana AW et al (2003) Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): a detailed study of preparation and stability parameters. Int J Pharm 253:23–38

    Article  CAS  Google Scholar 

  • Song CX, Labhasetwar V, Murphy H et al (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release 43:197–212

    Article  Google Scholar 

  • Song XR, Zhao Y, Wu WB et al (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency. Int J Pharm 350:320–329

    Article  CAS  Google Scholar 

  • Talukder MMR, Hayashi Y, Takeyama T et al (2003) Activity and stability of Chromobacterium viscosum lipase in modified AOT reverse micelles. J Mol Catal B: Enzym 22:203–209

    Article  CAS  Google Scholar 

  • Tesch S, Schubert H (2002) Influence of increasing viscosity of the aqueous phase on the short-term stability of protein stabilized emulsions. J Food Eng 52:305–312

    Article  Google Scholar 

  • Valot P, Baba M, Nedelec JM et al (2009) Effects of process parameters on the properties of biocompatible ibuprofen-loaded microcapsules. Int J Pharm 369:53–63

    Article  CAS  Google Scholar 

  • Wan F, You J, Sun Y et al (2008) Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): preparation and evaluation in vitro. Int J Pharm 359:104–110

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Jiangsu Natural Science Funds (Project No. BK2009420).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Li or Qunwei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Jiang, S., Shen, H. et al. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J Nanopart Res 13, 2375–2386 (2011). https://doi.org/10.1007/s11051-010-9998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9998-y

Keywords

Navigation