Journal of Nanoparticle Research

, Volume 13, Issue 5, pp 2029–2039 | Cite as

Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters

Research Paper

Abstract

The chemisorptions of hydrogen on aluminum arsenide clusters are studied with density functional theory (DFT). The on-top site is identified to be the most favorable chemisorptions site for hydrogen. And the Al-top site is the preferred one in the most cases for one hydrogen adsorption in (AlAs)n (n = 2, 5, 6, 8–15) clusters. Top on the neighboring Al and As atoms ground-state structures are found for two hydrogen adsorption on (AlAs)n except for (AlAs)2 cluster. The Al–As bond lengths decrease generally as the size of the cluster increases. And there is a slight increase in the mean Al–As bond lengths after H adsorption on the lowest-energy sites of the most AlAs clusters. In general, the binding energy of H and 2H are both found to decrease with an increase in the cluster size. And the result shows that large binding energies (BE) of a single hydrogen atom on small AlAs clusters and large highest occupied and lowest unoccupied molecular-orbital gaps for (AlAs)H and (AlAs)3H make these species behaving like magic clusters. Calculations on two hydrogen atoms on (AlAs)n clusters show large BE for (AlAs)nH2 with an odd number of n. The stability of these complexes is further studied from the fragmentation energies. (AlAs)7H2 and (AlAs)9H2 clusters are again suggested to be the stable clusters. On the other hand both the fragmentation energy and the binding energy for (AlAs)13H are close to the lowest values.

Keywords

Hydrogenated aluminum arsenide cluster Electronic properties Density functional theory Modeling and simulation Semiconductors 

References

  1. Andreoni W (1992) III–V semiconductor microclusters: structures, stability, and melting. Phys Rev B 45(8):4203–4207CrossRefGoogle Scholar
  2. Aranovich GL, Donohue MD (1999) Phase loops in density-functional-theory calculations of adsorption in nanoscale pores. Phys Rev E 60(5):5552–5560CrossRefGoogle Scholar
  3. Archibong EF, Marynick DS (2003) A computational study of the electron detachment energies of Al2As2 and Al3As3. Mol Phys 101(17):2785–2792CrossRefGoogle Scholar
  4. Archibong EF, St-Amant A (2002a) An ab initio and density functional Study of Al3As, Al3As, AlAs3, and AlAs3. J Phys Chem A 106(32):7390–7398CrossRefGoogle Scholar
  5. Archibong EF, St-Amant A (2002b) Electron detachment energies of AlAs and AlAs2. Chem Phys Lett 355(3–4):249–256CrossRefGoogle Scholar
  6. Asmis KR, Taylor TR, Neumark DM (1999a) Anion photoelectron spectroscopy of B2N. J Chem Phys 111(19):8838–8851CrossRefGoogle Scholar
  7. Asmis KR, Taylor TR, Neumark DM (1999b) Anion photoelectron spectroscopy of B3N. J Chem Phys 111(23):10491–10500CrossRefGoogle Scholar
  8. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  9. Chen L, Cooper AC, Pez GP, Chen HS (2007) Density functional study of sequential H2 dissociative chemisorption on a Pt6 cluster. J Phys Chem C 111(14):5514–5519CrossRefGoogle Scholar
  10. Costales A, Kandalam AK, Franco R, Pandey R (2002) Theoretical study of structural and vibrational properties of (AlP)n, (AlAs)n, (GaP)n, (GaAs)n, (InP)n, and (InAs)n clusters with n = 1, 2, 3. J Phys Chem B 106(8):1940–1944CrossRefGoogle Scholar
  11. Feng PY, Dai D, Balasubramanian K (2000) Electronic states of Al3As2, Al3As2, Al3As2+, Al2As3, Al2As3, and Al2As3+. J Phys Chem A 104(2):422–432CrossRefGoogle Scholar
  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Computer code GAUSSIAN03. Gaussian Inc., WallingfordGoogle Scholar
  13. Fu Q, Negro E, Chen G, Law DC, Li CH, Hicks RF, Raghavachari K (2002) Hydrogen adsorption on phosphorus-rich (2 × 1) indium phosphide (001). Phys Rev B 65(7):075318-1-6Google Scholar
  14. Gomez H, Taylor TR, Neumark DM (2001) Anion photoelectron spectroscopy of aluminum phosphide clusters. J Phys Chem A 105(28):6886–6893CrossRefGoogle Scholar
  15. Guo L (2008) Evolution of the electronic structure and properties of neutral and charged aluminum arsenide clusters: a comprehensive analysis. Comput Mater Sci 42(3):489–496CrossRefGoogle Scholar
  16. Gutsev GL, Johnson E, Mochena MD, Bauschlicher Jr CW (2008) The structure and energetics of (GaAs)n, (GaAs)n, and (GaAs)n+ (n = 2–15). J Chem Phys 128(14):144707-1-9Google Scholar
  17. Halls MD, Velkovski J, Schlegel HB (2001) Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor Chem Acc 105(6):413–421CrossRefGoogle Scholar
  18. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283CrossRefGoogle Scholar
  19. Hou PX, Xu ST, Zhe Y, Yang QH, Liu C, Cheng HM (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13):2471–2476CrossRefGoogle Scholar
  20. Kawamura H, Kumar V, Sun Q, Kawazoe Y (2002) Magic behavior and bonding nature in hydrogenated aluminum clusters. Phys Rev B 65(4):045406-1-11Google Scholar
  21. Li S, Van Zee RJ, Weltner W (1993) Far-infrared spectra of small gallium phosphide, arsenide, and antimonide molecules in rare-gas matrixes at 4 K. J Phys Chem 97(44):11393–11396CrossRefGoogle Scholar
  22. Lide DR (2000) CRC handbook of chemistry and physics. CRC Press, New YorkGoogle Scholar
  23. Mainardi DS, Balbuena PB (2003) Hydrogen and oxygen adsorption on Rhn (n = 1–6) clusters. J Phys Chem A 107(48):10370–10380CrossRefGoogle Scholar
  24. Quek HK, Feng YP, Ong CK (1997) Tight binding molecular dynamics studies of GamAsn and AlmAsn clusters. Z Phys D 42(4):309–313CrossRefGoogle Scholar
  25. Schailey R, Ray AK (2000) A cluster approach to hydrogen chemisorption on the GaAs(1 0 0) surface. Comput Mater Sci 22(3–4):169–179Google Scholar
  26. Taylor TR, Asmis KR, Xu CS, Neumark DM (1998) Evolution of electronic structure as a function of size in gallium phosphide semiconductor clusters. Chem Phys Lett 297(1–2):133–140CrossRefGoogle Scholar
  27. Tozzini V, Buda F, Fasolino A (2001) Fullerene-like III–V clusters: a density functional theory prediction. J Phys Chem B 105(50):12477–12480CrossRefGoogle Scholar
  28. Zhu X (2003) Spectroscopic properties for Al2As, AlAs2, and their ions. J Mol Struct 638(1–3):99–105Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Chemistry and Material ScienceShanxi Normal UniversityLinfenChina

Personalised recommendations