Skip to main content
Log in

Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) nanostructures may be an advanced candidate in biomedical applications for an apatite substitute of bone and teeth than other form of HAp. In contrast, well-defined size and shape control in synthesizing HAp nanostructures is always difficult. In this study, hydroxyapatite nanorods (HAp NRs) were prepared by simple hydrothermal method with controlling the reaction time without using any surfactant or templating agents. The nanostructure clearly depicts the growth stages of the HAp NRs by increasing the reaction time. The synthesized HAp has the rod like morphology with uniform size distribution with the aspect ratio of about 8–10. Transmission electron microscopic (TEM) and high resolution TEM (HRTEM) images show that the growth direction of the HAp is parallel to the (001) plane. The interplanar distances measured in segments (fringes) of the HRTEM micrograph were ~0.35 nm, corresponding to the interplanar spacing of the (002) plane of the hexagonal HAp. X-ray diffraction (XRD) measurements indicate that the improved crystallinity of the HAp by increasing the reaction time. The mechanical studies reveal that the improved tensile strength and the abrasion resistance are observed for the HAp nanorods reinforcing with high molecular weight polyethylene (HMWPE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aizawa M, Ueno H, Itatani K, Okada I (2006) Syntheses of calcium-deficient apatite fibers by a homogeneous precipitation method and their characterizations. J Eur Ceram Soc 26:501–507

    Article  CAS  Google Scholar 

  • Anmin H, Tong L, Ming L, Chengkang C, Huiqin L, Dali M (2006) Preparation of nanocrystals hydroxyapatite/TiO2 compound by hydrothermal treatment. Appl Catal B 63:41–44

    Article  Google Scholar 

  • Blakeslee KC, Condrate RA (1971) Vibrational spectra of hydrothermally prepared hydroxyapatites. J Am Ceram Soc 54:559–563

    Article  CAS  Google Scholar 

  • Cao M, Wang Y, Guo C, Qi Y, Hu C (2004) Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions. Langmuir 20:4784–4786

    Article  CAS  Google Scholar 

  • Chang MC, Ko C, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nano composite. Biomaterials 24:2853–2862

    Article  CAS  Google Scholar 

  • Chen B, Liang C (2007) Preparation of hydroxyapatite coating by the use of a sacrificial Mg anode method. Ceram Int 33:701–703

    Article  CAS  Google Scholar 

  • Chen JD, Wang YJ, Wei K, Zhang SH, Shi XT (2007) Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials 28:2275–2280

    Article  CAS  Google Scholar 

  • Cheng ZH, Yasukawa A, Kandori K, Ishikawa T (1998) FTIR study on incorporation of CO2 into calcium hydroxyapatite. J Chem Soc Faraday Trans 94:1501–1505

    Article  Google Scholar 

  • Cho SH, Joo SM, Cho JS, Lee JK, Kim H (2005) Mechanical properties and workability of self-hardening calcium phosphate cement as a function of the particle size distribution. J Ceram Process Res 6:57–62

    Google Scholar 

  • Di NS, Brovarone CV, Spriano S, Milanese D, Verne E, Bergo V, Maina G, Spinelli P (2004) Silver containing bioactive glasses prepared by molten salt ion-exchange. J Eur Ceram Soc 24:2935–2942

    Article  Google Scholar 

  • Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  • Elliott JC (1998) Recent studies of apatites and other calcium orthophospates. In: Bres E, Hardouin P (eds) Calcium phosphate materials, fundamentals. Sauramps Medical, Monpellier, p 25

    Google Scholar 

  • Feng X, Ye J, Wang Y, Rao P (2005) Deagglomeration of HA during the precipitation synthesis. J Mater Sci 40(20):5439–5442

    Article  Google Scholar 

  • Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  • Hirai T, Hodono M, Komasawa I (2000) The preparation of spherical calcium phosphate fine particles using an emulsion liquid membrane system. Langmuir 16:955–960

    Article  CAS  Google Scholar 

  • Huang J, Lin YW, Fu XW, Best SM, Brooks RA, Rushton N et al (2007) Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds. J Mater Sci Mater Med 18(11):2151–2157

    Article  CAS  Google Scholar 

  • Hulber SF, Bokros JC, Hench LL, Wilson J, Heimke G (1987) Ceramics in clinical applications: past, present and future. In: Vincenzini P (ed) High tech ceramics. Elsevier, Amsterdam, pp 189–213

    Google Scholar 

  • Kobayashi S, Kawai W (2007) Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties. Compos A 38:114–123

    Article  Google Scholar 

  • Lewandrowski KU, Bondre SP, Wise DL, Trantolo DJ (2003) Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Biomed Mater Eng 13(2):115–124

    CAS  Google Scholar 

  • Lin K, Chang J, Cheng R, Ruan M (2007) Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Mater Lett 61:1683–1687

    Article  CAS  Google Scholar 

  • Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2004) Porous poly(α-hydroxyacid)/BioglassR composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials 25:4185–4194

    Article  CAS  Google Scholar 

  • Markovíc M, Flower BO, Tung MS (2004) Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Stand Technol 109:553–568

    Google Scholar 

  • Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JAE (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27:905–916

    Article  CAS  Google Scholar 

  • Ramay HRR, Zhang M (2004) Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25:5171–5180

    Article  CAS  Google Scholar 

  • Rodriguez-Lorenzo LM, Vallet-Regi M (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12:2460–2465

    Article  CAS  Google Scholar 

  • Roeder RK, Sproul MM, Turner CH (2003) Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J Biomed Mater Res 67A:801–812

    Article  CAS  Google Scholar 

  • Sarda S, Heughebaert M, Lebugle A (1999) Influence of the type of surfactant on the formation of calcium phosphate in organized molecular systems. Chem Mater 11:2722–2727

    Article  CAS  Google Scholar 

  • Shen Z, Adolfsson E, Nygren M, Gao L, Kawaoka H, Niihara K (2001) Dense hydroxyapatite-zirconia ceramic composites with high strength for biological applications. Adv Mater 13:214–216

    Article  CAS  Google Scholar 

  • Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345

    Article  CAS  Google Scholar 

  • Shiha WJ, Wangb MC, Hona MH (2005) Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J Cryst Growth 275:e2339–e2344

    Article  Google Scholar 

  • Siegel RW, Fougere GE (1995) Mechanical properties of nanophase metals. Nanostruct Mater 6:205–216

    Article  CAS  Google Scholar 

  • Suchanek W, Yashima M, Kakihana M, Yoshimura M (1997) Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. J Am Ceram Soc 80:2805–2813

    Article  CAS  Google Scholar 

  • Sun Y, Guo G, Wang Z, Guo H (2006) Synthesis of single-crystal HAP nanorods. Ceram Int 32:951–954

    Article  CAS  Google Scholar 

  • Sun Y, Guo G, Tao D, Wang Z (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377

    Article  CAS  Google Scholar 

  • Walsh D, Mann S (1996) Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions. Chem Mater 8:1944–1953

    Article  CAS  Google Scholar 

  • Wang M (2003) Developing bioactive composite material for tissue replacement. Biomaterials 24:2133–2151

    Article  CAS  Google Scholar 

  • Wang YJ, Zhang SH, Wei K, Zhao N, Chen JD, Wang XD (2006a) Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett 60:1484–1487

    Article  CAS  Google Scholar 

  • Wang YJ, Chen JD, Wei K, Zhang SH, Wang XD (2006b) Surfactant-assisted synthesis of hydroxyapatite particles. Mater Lett 60:3227–3231

    Article  CAS  Google Scholar 

  • Webster TJ (2001) Nanophase ceramics: the future orthopedic and dental implant material. In: Ying JY (ed) Nanostructured materials. Academic Press, San Diego, pp 125–160

    Google Scholar 

  • Webster TJ, Siegel RW, Bizios R (1999) Design and evaluation of nanophase alumina for orthopaedic/dental applications. Nanostruct Mater 12:983–986

    Article  Google Scholar 

  • Wei G, Ma PE (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  CAS  Google Scholar 

  • Yang W, Araki H, Kohyama A, Thaveethavorn S, Suzuki H, Noda T (2004) Fabrication in situ SiC nanowires/SiC matrix composite by chemical vapour infiltration process. Mater Lett 58:3145–3148

    Article  CAS  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC, Lander R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17:175–185

    Article  CAS  Google Scholar 

  • Yuan ZY, Liu JQ, Peng LM (2002) Morphosynthesis of vesicular mesostructured calcium phosphate under electron irradiation. Langmuir 18:2450–2452

    Article  CAS  Google Scholar 

  • Zhang F, Zhou ZH, Yang SP, Mao LH, Chen HM, Yu XB (2005) Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater Lett 59:1422–1425

    Article  CAS  Google Scholar 

  • Zhu K, Yanagisawa K, Onda A, Kajiyoshi K (2004) Hydrothermal synthesis and morphology variation of cadmium hydroxyapatite. J Solid State Chem 177:4379–4385

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors AJN gratefully acknowledges the financial support from the Ministry of Higher Education, Taiwan, through Taiwan-India Collaborative Research Project. The authors also thank Mr. Wu Jun Jie and Mr. Dann Yu for their help in taking FESEM and TEM analysis. We are also indebted to Centre for EMO Materials and Nanotechnology, National Taipei University and Technology for Mechanical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mangalaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph Nathanael, A., Mangalaraj, D., Chi Chen, P. et al. Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene. J Nanopart Res 13, 1841–1853 (2011). https://doi.org/10.1007/s11051-010-9932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9932-3

Keywords

Navigation