Journal of Nanoparticle Research

, Volume 12, Issue 6, pp 1997–2001 | Cite as

Polymersomes, smaller than you think: ferrocene as a TEM probe to determine core structure

Brief Communication

Abstract

By incorporating ferrocene into the hydrophobic membrane of PEG-b-PCL polymersome nanoparticles it is possible to selectively visualize their core using Transmission Electron Microscopy (TEM). Two different sizes of ferrocene-loaded polymersomes with mean hydrodynamic diameters of approximately 40 and 90 nm were prepared. Image analysis of TEM pictures of these polymersomes found that the mean diameter of the core was 4–5 times smaller than the mean hydrodynamic diameter. The values obtained also allow the surface diameter and internal volume of the core to be calculated.

Keywords

Nanoparticle Characterization Pharmacokinetics Polymersomes PEG PCL TEM Biomedicine 

References

  1. Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra A (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243(1–2):93–105CrossRefPubMedGoogle Scholar
  2. Chithrani BD, Stewart J, Allen C, Jaffray DA (2009) Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5(2):118–127PubMedGoogle Scholar
  3. Christian NA, Milone MC, Ranka SS, Li GZ, Frail PR, Davis KP, Bates FS, Therien MJ, Ghoroghchian PP, June CH, Hammer DA (2007) Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug Chem 18(1):31–40CrossRefPubMedGoogle Scholar
  4. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43(1):25–30CrossRefPubMedGoogle Scholar
  5. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417):1143–1146CrossRefPubMedADSGoogle Scholar
  6. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1):1–9CrossRefPubMedGoogle Scholar
  7. Gaumet M, Gurny R, Delie F (2009) Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci 36(4–5):465–473CrossRefPubMedGoogle Scholar
  8. Ghoroghchian PP, Li GZ, Levine DH, Davis KP, Bates FS, Hammer DA, Therien MJ (2006a) Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)-block-polycaprolactone. Macromolecules 39(5):1673–1675CrossRefADSGoogle Scholar
  9. Ghoroghchian PP, Lin JJ, Brannan AK, Frail PR, Bates FS, Therien MJ, Hammer DA (2006b) Quantitative membrane loading of polymer vesicles. Soft Matter 2(11):973–980CrossRefGoogle Scholar
  10. Halperin A (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15(7):2525–2533CrossRefGoogle Scholar
  11. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269CrossRefPubMedGoogle Scholar
  12. Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, Lewis AL, Battaglia G (2007) Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater 19(23):4238–4243CrossRefGoogle Scholar
  13. Meng FH, Hiemstra C, Engbers GHM, Feijen J (2003) Biodegradable polymersomes. Macromolecules 36(9):3004–3006CrossRefADSGoogle Scholar
  14. Moghimi SM (1995a) Exploiting bone-marrow microvascular structure for drug-delivery and future therapies. Adv Drug Deliv Rev 17(1):61–73CrossRefGoogle Scholar
  15. Moghimi SM (1995b) Mechanisms of splenic clearance of blood-cells and particles—towards development of new splenotropic agents. Adv Drug Deliv Rev 17(1):103–115CrossRefGoogle Scholar
  16. Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH (2007) Neuron-specific delivery of nucleic acids mediated by Tet(1)-modified poly(ethylenimine). J Gene Med 9(8):691–702CrossRefPubMedGoogle Scholar
  17. Roy S, Johnston AH, Newman TA, Glueckert R, Dudas J, Bitsche M, Corbacella E, Rieger G, Martini A, Schrott Fischer A (2010) Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin derived peptide ligand: potential tool for drug delivery. Int J Pharm (in press). doi:10.1016/j.ijpharm.2010.02.003
  18. Zhou W, Feijen J (2008) Biodegradable polymersomes for controlled drug release. J Control Release 132(3):e35–e36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of SouthamptonSouthamptonUK
  2. 2.Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
  3. 3.School of Medicine, Clinical NeurosciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations