Skip to main content

Theoretical study of small clusters of manganese-doped gallium oxide: Mn(GaO) n and Mn2(GaO) n with n = 1−7

Abstract

Structures, electronic and magnetic properties of Mn and Mn2 doped stoichiometric (GaO) n clusters with n = 1−7 are studied in the framework of density functional theory. Doping of a Mn atom is found to be energetically favorable in (GaO) n clusters and the equilibrium configurations are found to be determined by the metal–oxygen interactions. Mn prefers to maximize the number of Mn–O bonds by selecting a Ga site in the cluster which increases its coordination with oxygen. Addition of a Mn atom in Mn(GaO) n clusters results into the ground state to be either ferromagnetic or antiferromagnetic depending on the Mn coordination number and the Mn–Mn bond-length in the given Mn2(GaO) n cluster.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. The binding energy per atom (E b) is defined as

    $${E}_{{\rm b}}[\hbox{(GaO)}_{n}\hbox{Mn}_{m}] = (-{E}[\hbox{(GaO)}_{n}\hbox{Mn}_{m}] + n({E[\hbox{Ga}]} + {E[\hbox{O}]}) + m{E[\hbox{Mn}]}) / (2n + m), $$

    where E is the total energy of the system.

  2. The fragmentation energies for Mn m (GaO) n cluster are calculated as

    $$ \begin{aligned} \Updelta^1 {E} &= {E}[(\hbox{GaO})_{n}\hbox{Mn}_{m}] - ({E[(\hbox{GaO})}_{n}\hbox{Mn}_{m-1}] +{E[\hbox{Mn}]}),\\ \Updelta^2 {E} &= {E}[(\hbox{GaO})_{n}\hbox{Mn}_{m}] - ({E}[(\hbox{GaO})_{n-1} \hbox{Mn}_{m}] + {E}[\hbox{GaO}]), \end{aligned} $$

    where E is the total energy of the system.

References

  • Blanco MA, Sahariah MB, Jiang H, Costales A, Pandey R (2005) Energetics and migration of point defects in Ga2O3. Phys Rev B 72:184103-1–184103-16

    Article  ADS  Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  ADS  Google Scholar 

  • Deshpande M, Kanhere DG, Pandey R (2006) Structural and electronic properties of neutral and ionic Ga n O n clusters with n = 4−7. J Phys Chem A 110:3814–3819

    Article  CAS  PubMed  Google Scholar 

  • Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors. Science 287:1019–1020

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gowtham S, Costales A, Pandey R (2004) Theoretical study of neutral and ionic states of small clusters of Ga m O n (mn = 1–2). J Phys Chem B 108:17295–17300

    Article  CAS  Google Scholar 

  • Gowtham S, Deshpande M, Costales A, Pandey R (2005) Structural, energetic, electronic, bonding, and vibrational properties of Ga3O, Ga3O2, Ga3O3, Ga2O3, and GaO3 clusters. J Phys Chem B 109:14836–14844

    Article  CAS  PubMed  Google Scholar 

  • Gutsev GL, Rao BK, Jena P, Wang XB, Wang LS (1999) Origin of the unusual stability of MnO 4 . Chem Phys Lett 312:598–605

    Article  CAS  ADS  Google Scholar 

  • Hayashi H, Huang R, Ikeno H, Oba F, Yoshioka S, Tanaka I, Sonoda S (2006) Room temperature ferromagnetism in Mn-doped γ-Ga2O3 with spinel structure. Appl Phys Lett 89:181903-1–181903-3

    Article  ADS  Google Scholar 

  • Huang R, Hayashi H, Oba F, Tanaka I (2007) Microstructure of Mn-doped γ-Ga2O3 epitaxial film on sapphire (0001) with room temperature ferromagnetism. J Appl Phys 101:063526-1–063526-6

    ADS  Google Scholar 

  • Kabir M, Mookerjee A, Kanhere DG (2006) Structure, electronic properties, and magnetic transition in manganese clusters. Phys Rev B 73:224439-1–224439-11

    ADS  Google Scholar 

  • Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  ADS  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  ADS  Google Scholar 

  • Lee SW, Ryu YG, Ahn HY, Park SI, Kim CS (2004) Ferromagnetic effects on transition metal doped Ga2O3-based semiconductor. Phys Stat Sol (C) 1:3550–3553

    Article  CAS  Google Scholar 

  • Pei G, Xia C, Dong Y, Wu B, Wang T, Xu J (2008) Studies of magnetic interactions in Mn-doped β-Ga2O3 from first-principles calculations. Scripta Materialia 58:943–946

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  ADS  Google Scholar 

  • Song YP, Wang PW, Xu XY, Wang Z, Li GH, Yu DP (2006) Magnetism and photoluminescence in manganese-gallium oxide nanowires with monoclinic and spinel structures. Physica E 31:67–71

    Article  CAS  ADS  Google Scholar 

  • Vienna Ab initio Simulation Package (VASP) (1999) Technische Universität Wien, Vienna

Download references

Acknowledgments

The authors thank helpful discussions with Dr. Anil Kandalam and S. Gowtham. MDD and Amol acknowledges financial assistance from the Department of Science and Technology (DST), Government of India. MDD thankfully acknowledges Dr. R. Pandey for providing local hospitality at Michigan Tech., USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinalini Deshpande.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rahane, A., Deshpande, M. & Pandey, R. Theoretical study of small clusters of manganese-doped gallium oxide: Mn(GaO) n and Mn2(GaO) n with n = 1−7. J Nanopart Res 12, 727–736 (2010). https://doi.org/10.1007/s11051-010-9871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9871-z

Keywords

  • DMS materials
  • Mn-doped gallium oxide clusters
  • Magnetic properties
  • Density functional theory
  • Semiconductors
  • Modeling and simulation