Skip to main content

Spectrally selective coatings of gold nanorods on architectural glass

Abstract

Infrared-blocking coatings on window glass can be produced by dispersing gold nanorods into a polymer coating. The spectral selectivity of the coating is controlled by the shape and aspect ratio of the nanoparticles, which are in turn determined by the conditions applied during their synthesis. Coatings of nanorods in polyvinyl alcohol were deposited onto glass and characterized in both laboratory and sun-lit conditions. Selective attenuation of the near-infrared was demonstrated with the test panels transmitting approximately one-third of the incident solar radiation and absorbing nearly two-thirds. The high absorptive cross sections of the gold nanorods suggest that they can be applied in efficacious coatings at relatively low volume fractions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Anon. (2008) Standard conditions of development consent in planning. Sydney City Council, Australia

    Google Scholar 

  • Bell JM, Matthews JP (1998) Glazing materials. Mater Forum 22:1–24

    CAS  Google Scholar 

  • Breitinger D, Herrmann W (1999) Synthetic methods of organometallic and inorganic chemistry. George Thieme Verlag, Stuttgart

    Google Scholar 

  • Chowdhury H, Xu X, Huynh P, Cortie M (2005) Radiative heat transfer across glass coated with gold nano-particles. J Sol Energ-T ASME 127:70–75

    CAS  Article  Google Scholar 

  • Cole JR, Halas NJ (2006) Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Appl Phys Lett 89:153120

    Article  ADS  Google Scholar 

  • Dai Y (2001) Solar control film retrofitted energy efficient windows for tropical climate. In: Proceedings of Glass Processing Days 2001. Tamglass Ltd Oy, Tampere, Finland

  • Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Article  ADS  Google Scholar 

  • Draine BT, Flatau PJ (2008) User guide for the discrete dipole approximation code DDSCAT 7.0. http://arxiv.org/abs/0809.0337. Accessed September 2008

  • G173-03 (2003) Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface. American Society for Testing and Materials (ASTM)

  • Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17:1325–1330

    CAS  Article  Google Scholar 

  • Gole A, Orendorff CJ, Murphy CJ (2004) Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions. Langmuir 20:7117–7122

    CAS  Article  PubMed  Google Scholar 

  • Granqvist CG (2003) Solar energy materials. Adv Mater 15:1789–1803

    CAS  Article  Google Scholar 

  • Harris N, Ford MJ, Mulvaney P, Cortie MB (2008) Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells. Gold Bull 41:5–14

    CAS  Google Scholar 

  • Holman JP (1990) Heat transfer, 7th edn. McGraw-Hill, London

    Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    CAS  Article  PubMed  Google Scholar 

  • Jana NR, Gearheart LA, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    CAS  Article  Google Scholar 

  • Johnson T (1991) Low-E glazing design guide. Butterworth Architecture, Boston

    Google Scholar 

  • Karisson J, Karlssson B, Roos A (2001) Performance of antireflection glazings in windows. In: Proceedings of glass processing days 2001. Tamglass Ltd Oy, Tampere, Finland

  • Murphy CJ, Sau TK, Gole A, Orendorff CJ (2005a) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic nanostructures. MRS Bull 30:349–355

    CAS  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005b) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    CAS  Article  PubMed  Google Scholar 

  • Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805

    CAS  Article  PubMed  Google Scholar 

  • Niidome Y, Takahashi H, Urakawa S, Nishioka K, Yamada S (2004) Immobilization of gold nanorods on the glass substrate by the electrostatic interactions for localized plasmon sensing. Chem Lett 33:454–455

    CAS  Article  Google Scholar 

  • Pardiñas-Blanco I, Hoppe C, Piñeiro-Redondo Y, López- Quintela M, Rivas J (2008) Formation of gold branched plates in diluted solutions of poly(vinylpyrrolidone) and their use for the fabrication of near-infrared-absorbing films and coatings. Langmuir 24:983–990

    Article  PubMed  Google Scholar 

  • Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    CAS  Article  Google Scholar 

  • Pérez-Juste J, Rodríguez-González B, Mulvaney P, Liz-Marzán LM (2005) Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv Funct Mater 15:1065–1071

    Article  Google Scholar 

  • Schelm S, Smith GB (2003) Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing. Appl Phys Lett 82:4346–4348

    CAS  Article  ADS  Google Scholar 

  • Shankar S, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572

    CAS  Article  Google Scholar 

  • Smith G, Niklasson G, Svensson J, Granqvist C (1986) Nobel-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films. J Appl Phys 59:571–581

    CAS  Article  ADS  Google Scholar 

  • van der Zande BMI, Pages L, Hikmet R, van Blaaderen A (1999) Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films. J Phys Chem B 103:5761–5767

    Article  Google Scholar 

  • Wei Z, Zamborini FP (2004) Directly monitoring the growth of gold nanoparticle seeds into gold nanorods. Langmuir 20:11301–11304

    CAS  Article  PubMed  Google Scholar 

  • Xu X, Cortie MB (2006) Shape change and color gamut in gold nanorods, dumbbells and dog-bones. Adv Funct Mater 16:2170–2176

    CAS  Article  Google Scholar 

  • Xu X, Stevens M, Cortie MB (2004) In situ precipitation of gold nanoparticles onto glass for potential architectural applications. Chem Mater 16:2259–2266

    CAS  Article  Google Scholar 

  • Xu X, Cortie MB, Stevens M (2005) Effect of glass pre-treatment on the nucleation of semi-transparent gold coatings. Mater Chem Phys 94:266–274

    CAS  Article  Google Scholar 

  • Xu X, Gibbons T, Cortie MB (2006) Spectrally-selective gold nanorod coatings for window glass. Gold Bull 39:156–165

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by AngloGold Ashanti Limited, AGR Matthey, and the Australian Research Council. We thank Mr. Martin Blaber for assistance with the calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Cortie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stokes, N.L., Edgar, J.A., McDonagh, A.M. et al. Spectrally selective coatings of gold nanorods on architectural glass. J Nanopart Res 12, 2821–2830 (2010). https://doi.org/10.1007/s11051-010-9864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9864-y

Keywords

  • Gold nanorods
  • Solar spectrum
  • Glazing
  • Infrared absorption
  • Coatings
  • Nanocomposites
  • Energy conservation