Skip to main content
Log in

Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetometry results have shown that gold NPs (∼2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham DW, Frank MM, Guha S (2005) Absence of magnetism in hafnium oxide films. Appl Phys Lett 87(25):252, 502

    Article  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  ADS  Google Scholar 

  • Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101(19):3706–3712

    Article  CAS  Google Scholar 

  • Andres RP, Bielefeld JD, Henderson JI, Janes DB, Kolagunta VR, Kubiak CP, Mahoney WJ, Osifchin RG (1996) Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273:1690–1693

    Article  CAS  ADS  Google Scholar 

  • Baker TA, Friend CM, Kaxiras E (2008) Chlorine interaction with defects on the Au(111) surface: a first-principles theoretical investigation. J Chem Phys 129(10):104, 702

    Article  Google Scholar 

  • Barnard AS, Young NP, Kirkland AI, van Huis MA, Xu H (2009) Nanogold: a quantitative phase map. ACS Nano 3(6):1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Bartlett PA, Bauer B, Singer SJ (1978) Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems. J Am Chem Soc 100(16):5085–5089

    Article  CAS  Google Scholar 

  • Boyen HG, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmüller S, Hartmann C, Möller M, Schmid G, Garnier MG, Oelhafen P (2002) Oxidation-resistant gold-55 clusters. Science 297(5586):1533–1536

    Article  CAS  PubMed  ADS  Google Scholar 

  • Braunstein P, Lehner H, Matt D, Burgess K, Ohlmeyer MJ (1990) Inorganic Syntheses, vol 27, chap 5: transition metal cluster complexes. Wiley InterScience, Malden. Section 42, A platinum-gold cluster: chloro-1 κ C l-bis(triethylphosphine-1κP)bis(triphenyl-phosphine)- 2κP, 3κP-triangulo-digold-platinum(1+) trifluoromethanesulfonate, pp 218–221

  • Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP (1981) Synthesis and X-ray structural characterization of the centered icosahedral gold cluster compound [Au13(PMe2Ph)10Cl2](PF6)3: the realization of a theoretical prediction. J Chem Soc Chem Commun (5):201–202

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun, p 801

  • Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79(10):1873–1876

    Article  CAS  ADS  Google Scholar 

  • Crespo P, Litrán R, Rojas TC, Multigner M, de la Fuente JM, Sánchez-López JC, García MA, Hernando A, Penadés S, Fernández A (2004) Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys Rev Lett 93(8):87, 204

    Article  Google Scholar 

  • Crespo P, García MA, Fernández-Pinel E, Multigner M, Alcántara D, de la Fuente JM, Penadés S, Hernando A (2006) Fe impurities weaken the ferromagnetic behavior in Au nanoparticles. Phys Rev Lett 97(17):177, 203

    Article  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  PubMed  Google Scholar 

  • de la Venta J, Bouzas V, Pucci A, Laguna-Marco MA, Haskel D, te Velthuis SGE, Hoffmann A, Lal J, Bleuel M, Ruggeri G, de Julián Fernández C, García MA (2009) X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles. J Nanosci Nanotech 9:6434–6438

    Article  Google Scholar 

  • Dutta P, Dal S, Seehra S, Anand M, Roberts CB (2007) Magnetism in dodecanethiol-capped gold nanoparticles: role of size and capping agent. Appl Phys Lett 90(21):102, 213

    Article  Google Scholar 

  • Fittipaldi M, Sorace L, Barra AL, Sangregorio C, Sessoli R, Gatteschi D (2009) Molecular nanomagnets and magnetic nanoparticles: the EMR contribution to a common approach. Phys Chem Chem Phys 11(31):6555–6568

    Article  CAS  PubMed  Google Scholar 

  • Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, Gil de Muro I, Suzuki K, Plazaola F, Rojo T (2008) Chemically induced permanent magnetism in Au, Ag and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8(2):661–667

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gonzalez C, Simón-Manso Y, Marquez M, Mujica V (2006) Chemisorption-induced spin symmetry breaking in gold clusters and the onset of paramagnetism in capped gold nanoparticles. J Phys Chem B 110(2):687–691

    Article  CAS  PubMed  Google Scholar 

  • Guerrero E, Rojas TC, Multigner M, Crespo P, Muñoz-Márquez MA, García MA, Hernando A, Fernández A (2007) Evolution of the microstructure, chemical composition and magnetic behaviour during the synthesis of alkanethiol-capped gold nanoparticles. Acta Mater 55(5):1723–1730

    Article  CAS  Google Scholar 

  • Guerrero E, Muñoz-Márquez MA, García MA, Crespo P, Fernández-Pinel E, Hernando A, Fernández A (2008) Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles. Nanotechnology 19(17):175, 701

    Article  Google Scholar 

  • Hernando A, Crespo P, García MA (2006a) Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale. Phys Rev Lett 96(5):57, 206

    Article  Google Scholar 

  • Hernando A, Crespo P, García MA, Fernández-Pinel E, de la Venta J, Fernández A, Penadés S (2006b) Giant magnetic anisotropy at the nanoscale: overcoming the superparamagnetic limit. Phys Rev B 74(5):52, 403

    Article  Google Scholar 

  • Jiang M, Terra J, Rossi AM, Morales MA, Saitovitch EMB, Ellis DE (2002) Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment. Phys Rev B 66(22):107, 224

    Article  Google Scholar 

  • Kastanas GN, Koel BE (1993) Interaction of Cl2 with the Au(111) surface in the temperature range of 120 to 1000 K. Appl Surf Sci 64:235–249

    Article  CAS  ADS  Google Scholar 

  • Luo W, Pennycook SJ, Pantelides ST (2007) s-Electron ferromagnetism in gold and silver nanoclusters. Nano Lett 7(10):3134–3137

    Article  CAS  PubMed  ADS  Google Scholar 

  • Menard LD, Gao SP, Xu H, Twesten RD, Harper AS, Song Y, Wang G, Douglas AD, Yang JC, Frenkel AI, Nuzzo RG, Murray RW (2006a) Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. J Phys Chem B 110(26):12874–12883

    Article  CAS  PubMed  Google Scholar 

  • Menard LD, Xu H, Gao SP, Twesten RD, Harper AS, Song Y, Wang G, Douglas AD, Yang JC, Frenkel AI, Murray RW, Nuzzo RG (2006b) Metal core bonding motifs of monodisperse icosahedral Au13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy. J Phys Chem B 110(30):14564–14573

    Article  CAS  Google Scholar 

  • Michael F, Gonzalez C, Mujica V, Marquez M, Ratner MA (2007) Size dependence of ferromagnetism in gold nanoparticles: mean field results. Phys Rev B 76(22):224, 409

    Article  Google Scholar 

  • Mingos DMP (1976) Molecular-orbital calculations on cluster compounds of gold. J Chem Soc Dalton Trans (13):1163–1169

  • Mingos DMP (1996) Gold—a flexible friend in cluster chemistry. J Chem Soc Dalton Trans (5):561–566

  • Müllegger S, Hänel K, Strunskus T, Wöll C, Winkler A (2006) Organic molecular beam deposition of oligophenyls on Au(111): a study by X-ray absorption spectroscopy. Chem Phys Chem 7:2552–2558

    PubMed  Google Scholar 

  • Narayanaswamy D, Marks LD (1993) Transformation in quasi-melting. Z Phys D 26:S70–S72

    Article  ADS  Google Scholar 

  • Negishi Y, Tsunoyama H, Suzuki M, Kawamura N, Matsushita MM, Maruyama K, Sugawara T, Yokoyama T, Tsukuda T (2006) X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J Am Chem Soc 128(37):12034–12035

    Article  CAS  Google Scholar 

  • Nunokawa K, Onaka S, Ito M, Horibe M, Yonezawa T, Nishihara H, Ozeki T, Chiba H, Watase S, Nakamoto M (2006) Synthesis, single crystal X-ray analysis, and TEM for a single-size Au11 cluster stabilized by SR ligands: the interface between molecules and particles. J Organomet Chem 691:638–642

    Article  CAS  Google Scholar 

  • Periyasamy G, Remacle F (2009) Ligand and solvation effects on the electronic properties of Au55 clusters: a density functional theory study. Nano Lett 9(8):3007–3011

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sampedro B, Crespo P, Hernando A, Litrán R, Sánchez-López JC, López-Cartes C, Fernández A, Ramírez J, Calbet JG, Vallet M (2003) Ferromagnetism in fcc twinned 2.4 nm size Pd nanoparticles. Phys Rev Lett 91(23):203, 237

    Article  CAS  Google Scholar 

  • Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37:1909–1930

    Article  CAS  PubMed  ADS  Google Scholar 

  • Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, Vandervelden WA (1981) Au55[P(C6H5)3]12Cl6—a gold cluster of an exceptional size. Chem Ber 114:3634–3642

    Article  CAS  Google Scholar 

  • Shinohara T, Sato T, Taniyama T (2003) Surface ferromagnetism of Pd fine particles. Phys Rev Lett 91(19):197, 201

    Article  CAS  Google Scholar 

  • Song Y, Huang T, Murray RW (2003) Heterophase ligand exchange and metal transfer between monolayer protected clusters. J Am Chem Soc 125(38):11694–11701

    Article  CAS  Google Scholar 

  • Steiner UB, Neuenschwander P, Caseri WR, Suter UW, Stucki F (1992) Adsorption of NPh3, PPh3, AsPh3, SbPh3 and BiPh3 on gold and copper. Langmuir 8(1):90–94

    Article  Google Scholar 

  • Suber L, Fiorani D, Scavia G, Imperatori P, Plunkett WR (2007) Permanent magnetism in dithiol-capped silver nanoparticles. Chem Mater 19(6):1509–1517

    Article  CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  PubMed  ADS  Google Scholar 

  • Teo BK, Shi XB, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc 114(7):2743–2745

    Article  CAS  Google Scholar 

  • Tronconi AL, Morais PC, Pelegrini F, Tourinho FA (1993) Electron paramagnetic resonance study of ionic water-based manganese ferrite ferrofluids. J Magn Magn Mater 122:90–92

    Article  CAS  ADS  Google Scholar 

  • Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticles catalysts derived from 55-atom clusters. Nature 454:981–U31

    Article  CAS  PubMed  ADS  Google Scholar 

  • Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  CAS  PubMed  ADS  Google Scholar 

  • Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci USA 105(51):9157–9162

    Article  CAS  PubMed  ADS  Google Scholar 

  • Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (d core ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122(51):12890–12891

    Article  CAS  Google Scholar 

  • Whetten RL, Price RC (2007) Nano-golden order. Science 318:407–408

    Article  CAS  PubMed  Google Scholar 

  • Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mat 8(5):428

    Article  CAS  Google Scholar 

  • Wilcoxon JP, Martin JE, Provencio P (2000) Size distributions of gold nanoclusters studied by liquid chromatography. Langmuir 16(25):9912–9920

    Article  CAS  Google Scholar 

  • Woehrle GH, Hutchison JE (2005) Thiol-functionalized undecagold clusters by ligand exchange: synthesis, mechanism, and properties. Inorg Chem 44(18):6149–6158

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Miura T, Suzuki M, Kawamura N, Miyagawa H, Nakamura T, Kobayashi K, Teranishi T, Hori H (2004) Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys Rev Lett 93(11):116, 801

    Article  Google Scholar 

  • Yang Y, Chen S (2003) Surface manipulation of the electronic energy of subnanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett 3(1):75–79

    Article  CAS  ADS  Google Scholar 

  • Yu M, Bovet N, Satterley CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) True nature of an archetypal self-assembly system: mobile Au-thiolate species on Au(111). Phys Rev Lett 97(16):102, 166

    Article  Google Scholar 

  • Zhang P, Sham TK (2002) Tuning the electronic behavior of Au nanoparticles with capping molecules. Appl Phys Lett 81(4):736–738

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the European Synchrotron Radiation Facility and BM29 beamline staff. This research has been supported by the Spanish Ministry of Science ‘Ministerio de Ciencia e Innovación (MICINN)’ (Strategic Action NAN2004-09125-C07) and the Andalusian Government ‘Junta de Andalucía’ (Excellence Project P06-FQM-02254 and P09-FQM-4554, group TEP127). M.A. Muñoz-Márquez thanks the Spanish Research Council ‘Consejo Superior de Investigaciones Científicas (CSIC)’ I3P programme, E. Guerrero acknowledges the MICINN for financial support and R. Lucena thanks CSIC for a PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Muñoz-Márquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Márquez, M.A., Guerrero, E., Fernández, A. et al. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles. J Nanopart Res 12, 1307–1318 (2010). https://doi.org/10.1007/s11051-010-9862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9862-0

Keywords

Navigation