Skip to main content
Log in

Biotoxicity of nanoparticles: effect of natural organic matter

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Various natural organic matters (NOM) with different characteristics in aquatic environment may affect toxicity of leased nanoparticles, owing to interactions between NOM and nanoparticles. This study investigated the effect of NOM and physical characteristics of the effluent organic matter (EfOM) on the ecotoxicity of quantum dots (QD) using Daphnia magna. Organic matter samples were obtained from: Yeongsan River (YR-NOM), Dongbuk Lake (DL-NOM), Damyang wastewater treatment plant (EfOM), and Suwannee River NOM (SR-NOM). The QD was composed of a CdSe core, ZnS shell, and polyethylene glycol coating. The average size of the investigated QD was 4.8, 56.5, and 25.0 nm determined by transmission electron microscopy, dynamic light scattering, and asymmetric flow field-flow fractionation, respectively. The relative hydrophobicity of NOM was investigated using both specific UV absorbance at 254 nm and XAD-8/4 resins. The sorption of NOM on the QD was measured using a fluorescence quenching method. The highest hydrophobicity was exhibited by the SR-NOM, while the lowest was recorded for the DL-NOM. All tested NOMs significantly reduced the acute toxicity of D. magna when adsorbed to QD, and the order of effectiveness for each NOM was as follows: SR-NOM > EfOM > YS-NOM > DL-NOM. The sorption of NOM on the QD surface caused a decrease in the fluorescence intensity of QD at increasing NOM concentration. This suggests that the NOM coating influenced the physicochemical characteristics of QD in the internal organs of D. magna by inducing a reduced bioavailability. Results from this study revealed that NOM with relatively high hydrophobicity had a greater capability of inducing toxicity mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, Baba Y (2004) Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 4:1567–1573

    Article  CAS  Google Scholar 

  • Boylston E (2002) Staining and other microscopic techniques for textiles. Microsc Microanal 8(Suppl. 2):192–193

    Google Scholar 

  • Cho J, Park Y-J, Sun H, Kim S, Yoon Y (2006) Measurements of effective sizes and diffusivities of nano-colloids and micro-particles. Colloids Surf A 274:43–47

    Article  CAS  Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51

    Article  CAS  Google Scholar 

  • Deerinck TJ (2008) The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol 36:112–116

    Article  CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  • Evident Technologies (2008) www.evidenttech.com/products/evidots.html

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm 58:369–383

    Article  CAS  Google Scholar 

  • Gaunt JA, Knight AE, Windsor SA, Chechik V (2005) Stability and quantum yield effects of small molecule additives on solutions of semiconductor nanoparticles. J Colloid Interface Sci 290:437–443

    Article  CAS  Google Scholar 

  • Gauthler TD, Shane EC, Guerln WF, Seitz WR, Grant CL (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol 20:1162–1166

    Article  Google Scholar 

  • Ghali M (2010) Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots. J Lumin 130:1254–1257

    Article  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physiochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Hyung H, Kim J-h (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of nom characteristics and water quality parameters. Environ Sci Technol 42:4416–4421

    Article  CAS  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim J-h (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotubes, multi-wall nanotubes, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  Google Scholar 

  • Kloepfer JA, Bradforth SE, Nadeau JL (2005) Photophysical properties of biologically compatible CdSe quantum dot structures. J Phys Chem 109:9996–10003

    CAS  Google Scholar 

  • Lee N, Amy G, Croué J-P, Buisson H (2004) Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res 38:4511–4523

    Article  CAS  Google Scholar 

  • Lee S, Ang WS, Elimelech M (2006) Fouling of reverse osmosis membranes by hydrophilic organic matter: Implications for water reuse. Desalination 187:313–321

    Article  CAS  Google Scholar 

  • Li D, Lyon DY, Li Q, Alvarez PJ (2008) Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ Toxicol Chem 27:1888–1894

    Article  CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nono-C60, and C60HxC70Hx). Environ Sci Technol 41:4465–4470

    Article  CAS  Google Scholar 

  • Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430

    Article  CAS  Google Scholar 

  • Maier KJ, Foe CG, Knight AW (1993) Comparative toxicity of selenate, selenite, seleno-DL-methionine and seleno-DL-cystine to Daphnia magna. Environ Toxicol Chem 12:755–763

    CAS  Google Scholar 

  • Manciulea A, Baker A, Lead JR (2009) A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles. Chemosphere 76:1023–1027

    Article  CAS  Google Scholar 

  • Moon J, Cho J (2005) Investigation of nano-colloid transport in UF membranes using flow field-flow fractionation (flow FFF) and an irreversible thermodynamic transport model. Desalination 179:151–159

    Article  CAS  Google Scholar 

  • Moon J, Kim SH, Cho J (2006) Characterizations of natural organic matter as nano particle using flow field-flow fractionation. Colloids Surf A287:232–236

    Google Scholar 

  • Navarro DAG, Watson DF, Aga DS, Banerjee S (2009) Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment. Environ Sci Technol 43:677–682

    Article  CAS  Google Scholar 

  • Oberdőrster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  Google Scholar 

  • Oh HI, Hoff JE, Amstrong GS, Haff LA (1980) Hydrophobic interaction in tannin-protein complexes. J Agric Food Chem 28:394–398

    Article  CAS  Google Scholar 

  • Park N, Kwon B, Kim IS, Cho J (2005) Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters. J Membr Sci 258:43–54

    Article  CAS  Google Scholar 

  • Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Ke P, Rao AM, Klaine SJ (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41:3025–3029

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Nonteiro-Riviere NA (2006) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Article  Google Scholar 

  • Sarathchandra WD, Mainwaring DE (2005) Effect of poly(ethylene glycol) on the hydrophobic interactions and rheology of proanthocyanidin biopolymers from pinus radiata. J Appl Polym Sci 97:1254–1260

    Article  CAS  Google Scholar 

  • Schlautman MA, Morgan JJ (1993) Binding of a fluorescent hydrophobic organic probe by dissolved humic substances and organically-coated aluminum oxide surfaces. Environ Sci Technol 27:2523–2532

    Article  CAS  Google Scholar 

  • Shaw JR, Dempsey TD, Chen CY, Hamilton JW, Folt CL (2006) Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids. Environ Toxicol Chem 25:182–189

    Article  CAS  Google Scholar 

  • Slaveykova VI, Startchev K (2009) Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions. Environ Pollut 157:3445–3450

    Article  CAS  Google Scholar 

  • U.S. EPA (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Cincinnati, EPA/600/4-90/027F

  • Wiesner MR, Lowry GV, Alvarez PJ, Dionysiou D (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Willis J, Morris J (2007) Nanotechnology white paper. 100/B-07/001. U.S. EPA, Washington, DC. http://www.epa.gov/osa/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf

  • Yamamoto H, Liljestrand HM, Shimizu Y, Morita M (2003) Effects of physical-chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ Sci Technol 37:2646–2657

    Article  CAS  Google Scholar 

  • Yohannes G, Holappa S, Wiedmer SK, Andersson T, Tenhu H, Riekkola ML (2005) Polyelectrolyte complexes of poly(methacryloxyethyl trimethylammonium chloride) and poly(ethylene oxide)-block-poly(sodium methacrylate) studied by asymmetrical flow field-flow fractionation and dynamic light scattering. Anal Chim Acta 542:222–229

    Article  CAS  Google Scholar 

  • Yoon Y, Westerhoff P, Snyder SA (2005) Adsorption of 3H-labled 17-β estradiol on powdered activated carbon. Water Air Soil Pollut 166:343–351

    Article  CAS  Google Scholar 

  • Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, Johns J, Krezek R, Colvin VL (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–2879

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant of NOM NRL (No. R0A-2007-000-20055-0) through the KOSEF, and also by the Basic Research Project through a grant provided by GIST in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeweon Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kim, K., Shon, H.K. et al. Biotoxicity of nanoparticles: effect of natural organic matter. J Nanopart Res 13, 3051–3061 (2011). https://doi.org/10.1007/s11051-010-0204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0204-z

Keywords

Navigation