Skip to main content

Pumping power of nanofluids in a flowing system


Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Blasius H (1913) Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, Forschungsarbeiten des Ingenieurwesens. Heft 131. Verein Deutscher Ingenieure, Berlin

  • Fox R, McDonald A, Pritchard P (2008) Introduction to fluid mechanics, 7th edn. Wiley, New Jersey

    Google Scholar 

  • Mouromtseff IE (1942) Water and forced-air cooling of vacuum tubes. Proc Inst Radio Eng 30:190–205

    Google Scholar 

  • Timofeeva EV, Routbort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluid. J Appl Phys 106:014304

    Article  Google Scholar 

  • Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL (2010) Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 21:215703

    Article  Google Scholar 

  • Timofeeva E, Yu W, France DM, Singh D, Routbort JL (2011) Base fluid and temperature effects on the heat-transfer characteristics of SiC nanofluids in EG/H2O and H2O. J Applied Physics 109 (in press)

  • Torii S (2010) Turbulent heat transfer behavior of nanofluid in a circular tube heated under constant heat flux. Adv Mech Eng 2010:917612

    Google Scholar 

  • Vold RD, Vold MJ (1983) Colloid and interface chemistry. Addison-Wesley, Reading

    Google Scholar 

  • Williams W, Buongiorno J, Hu L-W (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zironia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transfer 130:042412

    Article  Google Scholar 

  • Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanfluids. J Heat Transf 125:151–155

    Article  CAS  Google Scholar 

  • Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460

    Article  CAS  Google Scholar 

  • Yu W, France DM, Timofeeva EV, Singh D, Routbort JL (2010) Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow. Appl Phys Lett 96:213109

    Article  Google Scholar 

Download references


The authors are grateful to Drs. Steve Hartline of Saint-Gobain and Yun Chang of Sasol North America Inc., for supplying the SiC–water nanofluid and the alumina nanoparticles, respectively. Roger Smith was instrumental in the design and construction of the apparatus. This work was sponsored by the Office of Vehicle Technologies and the Industrial Technology Program of the US Department of Energy under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jules L. Routbort.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Routbort, J.L., Singh, D., Timofeeva, E.V. et al. Pumping power of nanofluids in a flowing system. J Nanopart Res 13, 931–937 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Nanofluids
  • Fluid flow
  • Pumping power
  • Nanoparticle
  • Colloids