Skip to main content
Log in

Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting

  • Brief communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Because of the geometric features of both rod and shell, dielectric-silver core–shell ellipsoidal nanostructure with 12–40 nm semi-major axis may bring forth four surface plasmon resonance (SPR) absorption peaks at most. Theoretical calculations based on quasi-static approximation show that there is surrounding refractive index-dependent plasmon blending and splitting in the absorption spectra, which makes the number of plasmon band of the silver ellipsoidal nanoshell is tunable. The sensitivity of the plasmon blending and splitting to the surrounding refractive index may be improved by increasing the shell thickness, aspect ratio or core refractive index. This local refractive index dependent-plasmon blending and splitting presents a new sensing picture based on tuning the number of SPR absorption peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bohren CF (1983) Absorption and scattering of light by small particles. A Wiley Interscience, New York

    Google Scholar 

  • Brandl DW, Nordlander P (2007) Plasmon modes of curvilinear metallic core/shell particles. J Chem Phys 26(14):144708

    Article  Google Scholar 

  • Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15(3):701–709

    Article  CAS  Google Scholar 

  • Chen CD, Cheng SF, Chau LK, Wang CRC (2007) Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron 22(6):926–932

    Article  CAS  Google Scholar 

  • Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237

    Article  CAS  Google Scholar 

  • Halas N (2005) Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull 30(5):362–367

    Article  CAS  Google Scholar 

  • Khalavka Y, Becker J, Sönnichsen C (2009) Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc 131(5):1871–1875

    Article  CAS  Google Scholar 

  • Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78(2):173–292

    Article  CAS  Google Scholar 

  • Prodan E, Radlo C, Halas NJ, Nordlander P (2003a) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  • Prodan E, Nordlander P, Halas NJ (2003b) Effects of dielectric screening on the optical properties of metallic nanoshells. Chem Phys Lett 368(1–2):94–101

    Article  CAS  Google Scholar 

  • Tam F, Halas N (2003) Plasmon response of nanoshell dopants in organic films: a simulation study. Prog Org Coat 47(3–4):275–278

    Article  CAS  Google Scholar 

  • Tam F, Moran C, Halas N (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108(45):17290–17294

    Article  CAS  Google Scholar 

  • Ueno K, Juodkazis S, Mino M, Mizeikis V, Misawa H (2007) Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment. J Phys Chem C 111(11):4180–4184

    Article  CAS  Google Scholar 

  • Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6(4):827–832

    Article  CAS  Google Scholar 

  • Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664

    Article  CAS  Google Scholar 

  • Zhu J (2007) Ellipsoidal core-shell dielectric-gold nanostructure: theoretical study of the tunable surface plasmon resonance. J Nanosci Nanotechno 7(3):1059–1064

    Article  CAS  Google Scholar 

  • Zhu J (2008) Local environment dependent linewidth of plasmon absorption in gold nanoshell: effects of local field polarization. Appl Phys Lett 92(24):241919

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the by the National Natural Science Foundation of China under Grant no. 10804091 and the National High-tech Research and Development Program (863 Program) of China under Grant no. 2009AA04Z314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Jun-wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, Z., Xing-chun, D., Jian-jun, L. et al. Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting. J Nanopart Res 13, 953–958 (2011). https://doi.org/10.1007/s11051-010-0179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0179-9

Keywords

Navigation