Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 15–32 | Cite as

Multicomponent periodic nanoparticle superlattices



In this article, we review the state-of-the-art in the preparation and characterization of multicomponent self-assembled superlattices of colloidal nanoparticles with core sizes in the range of 2–20 nm and interparticle spacing less than 2 nm down to intimate contact stemming from sintering. Several aspects of the field are discussed, including: structural organization, the role of particle size distribution, key interparticle forces at play, and methods of investigation of the structures. Contrary to the extensively studied colloidal crystals composed of microscale particles, the nanoparticles possess unique size-dependent properties, such as electronic, optical, or magnetic, which when combined into periodic structures can potentially lead to new collective states stemming from precise positioning of the nanocolloids. As such, we examine a number of emerging applications of this new class of metamaterials. Finally, we speculate on the potential impact of these materials, the new directions, and the challenges for the researchers.


Self-assembly Interparticle forces Colloidal crystals Nanoparticles Superlattices Future perspective Nanopatterning Surface science 


  1. Aizenberg J, Muller DA, Grazul JL, Hamann DR (2003) Direct fabrication of large micropatterned single crystals. Science 299:1205–1208CrossRefGoogle Scholar
  2. Auer S, Frenkel D (2001) Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413:711–713CrossRefGoogle Scholar
  3. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335CrossRefGoogle Scholar
  4. Baker JL, Widmer-Cooper A, Toney MF, Geissler PL, Alivisatos AP (2010) Device-scale perpendicular alignment of colloidal nanorods. Nano Lett 10:195–201CrossRefGoogle Scholar
  5. Barick KC, Bahadur D (2010) Self-assembly of colloidal nanoscale particles: fabrication, properties and applications. J Nanosci Nanotechnol 10:668–689CrossRefGoogle Scholar
  6. Bartlett P, Ottewill RH, Pusey PN (1992) Superlattice formation in binary-mixtures of hard-sphere colloids. Phys Rev Lett 68:3801–3804CrossRefGoogle Scholar
  7. Black CT, Murray CB, Sandstrom RL, Sun SH (2000) Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290:1131–1134CrossRefGoogle Scholar
  8. Blake AJ, Champness NR, Hubberstey P, Li WS, Withersby MA, Schroder M (1999) Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev 183:117–138CrossRefGoogle Scholar
  9. Bodnarchuk MI, Kovalenko MV, Heiss W, Talapin DV (2010) Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J Am Chem Soc 132:11967–11977CrossRefGoogle Scholar
  10. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  11. Chen Z, O’Brien S (2008) Structure direction of II–VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2:1219–1229CrossRefGoogle Scholar
  12. Chen CC, Herhold AB, Johnson CS, Alivisatos AP (1997) Size dependence of structural metastability in semiconductor nanocrystals. Science 276:398–401CrossRefGoogle Scholar
  13. Chen XD, Lenhert S, Hirtz M, Lu N, Fuchs H, Chi LF (2007a) Langmuir–Blodgett patterning: a bottom-up way to build mesostructures over large areas. Acc Chem Res 40:393–401CrossRefGoogle Scholar
  14. Chen ZY, Moore J, Radtke G, Sirringhaus H, O’Brien S (2007b) Binary nanoparticle superlattices in the semiconductor–semiconductor system: CdTe and CdSe. J Am Chem Soc 129:15702–15709CrossRefGoogle Scholar
  15. Chen J, Dong AG, Cai J, Ye X, Kang Y, Kikkawa JM, Murray CB (2010a) Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. Nano Lett. doi:10.1021/nl103568q
  16. Chen J, Ye XC, Murray CB (2010b) Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices. ACS Nano 4:2374–2381CrossRefGoogle Scholar
  17. Cheng ZD, Russell WB, Chaikin PM (1999) Controlled growth of hard-sphere colloidal crystals. Nature 401:893–895CrossRefGoogle Scholar
  18. Cheon J, Park JI, Choi JS, Jun YW, Kim S, Kim MG, Kim YM, Kim YJ (2006) Magnetic superlattices and their nanoscale phase transition effects. Proc Natl Acad Sci USA 103:3023–3027CrossRefGoogle Scholar
  19. Cho KS, Talapin DV, Gaschler W, Murray CB (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127:7140–7147CrossRefGoogle Scholar
  20. Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR (1997) Reversible tuning of silver quantum dot monolayers through the metal–insulator transition. Science 277:1978–1981CrossRefGoogle Scholar
  21. Collier CP, Vossmeyer T, Heath JR (1998) Nanocrystal superlattices. Ann Rev Phys Chem 49:371–404CrossRefGoogle Scholar
  22. Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM (2004) Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303:989–990CrossRefGoogle Scholar
  23. Cottin X, Monson PA (1995) Substitutionally ordered solid-solutions of hard-spheres. J Chem Phys 102:3354–3360CrossRefGoogle Scholar
  24. Courty A, Mermet A, Albouy PA, Duval E, Pileni MP (2005) Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nat Mater 4:395–398CrossRefGoogle Scholar
  25. Desiraju GR (1995) Supramolecular synthons in crystal engineering—a new organic-synthesis. Angew Chem Int Ed 34:2311–2327CrossRefGoogle Scholar
  26. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009CrossRefGoogle Scholar
  27. Dong AG, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466:474–477CrossRefGoogle Scholar
  28. Eldridge MD, Madden PA, Frenkel D (1993a) Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365:35–37CrossRefGoogle Scholar
  29. Eldridge MD, Madden PA, Frenkel D (1993b) The stability of the AB13 crystal in a binary hard-sphere system. Mol Phys 79:105–120CrossRefGoogle Scholar
  30. Evers WH, Friedrich H, Filion L, Dijkstra M, Vanmaekelbergh D (2009) Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography. Angew Chem Int Ed 48:9655–9657Google Scholar
  31. Evers WH, De Nijs B, Filion L, Castillo S, Dijkstra M, Vanmaekelbergh D (2010) Entropy-driven formation of binary semiconductor–nanocrystal superlattices. Nano Lett 10:4235–4241CrossRefGoogle Scholar
  32. Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514CrossRefGoogle Scholar
  33. Fialkowski M, Bitner A, Grzybowski BA (2005) Self-assembly of polymeric microspheres of complex internal structures. Nat Mater 4:93–97CrossRefGoogle Scholar
  34. Friedrich H, Gommes CJ, Overgaag K, Meeldijk JD, Evers WH, de Nijs B, Boneschanscher MP, de Jongh PE, Verkleij AJ, de Jong KP, van Blaaderen A, Vanmaekelbergh D (2009) Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. Nano Lett 9:2719–2724CrossRefGoogle Scholar
  35. Furumi S, Fudouzi H, Sawada T (2010) Self-organized colloidal crystals for photonics and laser applications. Laser Photonics Rev 4:205–220CrossRefGoogle Scholar
  36. Ge GL, Brus L (2000) Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly. J Phys Chem B 104:9573–9575CrossRefGoogle Scholar
  37. Gelbart WM, Sear RP, Heath JR, Chaney S (1999) Array formation in nano-colloids: theory and experiment in 2D. Faraday Discuss 112:299–307CrossRefGoogle Scholar
  38. Greig LM, Philp D (2001) Applying biological principles to the assembly and selection of synthetic superstructures. Chem Soc Rev 30:287–302CrossRefGoogle Scholar
  39. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  40. Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM (2009) Self-assembly: from crystals to cells. Soft Matter 5:1110–1128CrossRefGoogle Scholar
  41. Hachisu S, Yoshimura S (1980) Optical demonstration of crystalline superstructures in binary-mixtures of latex globules. Nature 283:188–189CrossRefGoogle Scholar
  42. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294:1684–1688CrossRefGoogle Scholar
  43. Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138CrossRefGoogle Scholar
  44. Hawker CJ, Russell TP (2005) Block copolymer lithography: merging “bottom-up” with “top-down” processes. MRS Bull 30:952–966CrossRefGoogle Scholar
  45. Heath JR, Knobler CM, Leff DV (1997) Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J Phys Chem B 101:189–197CrossRefGoogle Scholar
  46. Hunt N, Jardine R, Bartlett P (2000) Superlattice formation in mixtures of hard-sphere colloids. Phys Rev E 62:900–913CrossRefGoogle Scholar
  47. Huo LH, Li W, Lu LH, Cui HN, Xi SQ, Wang J, Zhao B, Shen YC, Lu ZH (2000) Preparation, structure, and properties of three-dimensional ordered alpha-Fe2O3 nanoparticulate film. Chem Mater 12:790–794CrossRefGoogle Scholar
  48. Hynninen AP, Thijssen JHJ, Vermolen ECM, Dijkstra M, van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202–205CrossRefGoogle Scholar
  49. Jacobs K, Zaziski D, Scher EC, Herhold AB, Alivisatos AP (2001) Activation volumes for solid–solid transformations in nanocrystals. Science 293:1803–1806CrossRefGoogle Scholar
  50. Jia S, Banerjee S, Herman IP (2008) Mechanism of the electrophoretic deposition of CdSe nanocrystal films: influence of the nanocrystal surface and charge. J Phys Chem C 112:162–171CrossRefGoogle Scholar
  51. Kalsin AM, Grzybowski BA (2007) Controlling the growth of “ionic” nanoparticle supracrystals. Nano Lett 7:1018–1021CrossRefGoogle Scholar
  52. Kalsin AM, Fialkowski M, Paszewski M, Smoukov SK, Bishop KJM, Grzybowski BA (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424CrossRefGoogle Scholar
  53. Kiely CJ, Fink J, Brust M, Bethell D, Schiffrin DJ (1998) Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396:444–446CrossRefGoogle Scholar
  54. Kiely CJ, Fink J, Zheng JG, Brust M, Bethell D, Schiffrin DJ (2000) Ordered colloidal nanoalloys. Adv Mater 12:640–643CrossRefGoogle Scholar
  55. Kim F, Kwan S, Akana J, Yang PD (2001) Langmuir–Blodgett nanorod assembly. J Am Chem Soc 123:4360–4361CrossRefGoogle Scholar
  56. Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys Rev Lett 96:045901–045904CrossRefGoogle Scholar
  57. Kolny J, Kornowski A, Weller H (2002) Self-organization of cadmium sulfide and gold nanoparticles by electrostatic interaction. Nano Lett 2:361–364CrossRefGoogle Scholar
  58. Kovalenko MV, Bodnarchuk MI, Talapin DV (2010) Nanocrystal superlattices with thermally degradable hybrid inorganic–organic capping ligands. J Am Chem Soc 132:15124–15126CrossRefGoogle Scholar
  59. Kummerfeld JK, Hudson TS, Harrowell P (2008) The densest packing of AB binary hard-sphere homogeneous compounds across all size ratios. J Phys Chem B 112:10773–10776CrossRefGoogle Scholar
  60. Lambert K, Capek RK, Bodnarchuk MI, Kovalenko MV, Van Thourhout D, Heiss W, Hens Z (2010) Langmuir–Schaefer deposition of quantum dot multilayers. Langmuir 26:7732–7736CrossRefGoogle Scholar
  61. Laves F (1956) In theory of alloy phases. American Society for Metals, Cleveland, p 124Google Scholar
  62. Lehn JM (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information-processing and self-organization. Angew Chem Int Ed 29:1304–1319CrossRefGoogle Scholar
  63. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783CrossRefGoogle Scholar
  64. Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI, Imhof A, Dijkstra M, van Roij R, van Blaaderen A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235–240CrossRefGoogle Scholar
  65. Li M, Schnablegger H, Mann S (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402:393–395CrossRefGoogle Scholar
  66. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRefGoogle Scholar
  67. Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850CrossRefGoogle Scholar
  68. Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5:5–9CrossRefGoogle Scholar
  69. Lu C, Chen Z, O’Brien S (2008) Optimized conditions for the self-organization of CdSe–Au and CdSe–CdSe binary nanoparticle superlattices. Chem Mater 20:3594–3600CrossRefGoogle Scholar
  70. Maillard M, Motte L, Ngo AT, Pileni MP (2000) Rings and hexagons made of nanocrystals: a Marangoni effect. J Phys Chem B 104:11871–11877CrossRefGoogle Scholar
  71. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2:382–385CrossRefGoogle Scholar
  72. Marlow F, Muldarisnur, Sharifi P, Brinkmann R, Mendive C (2009) Opals: status and prospects. Angew Chem Int Ed 48:6212–6233CrossRefGoogle Scholar
  73. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  74. Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658CrossRefGoogle Scholar
  75. Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6:656–660CrossRefGoogle Scholar
  76. Murray MJ, Sanders JV (1980) Close-packed structures of spheres of 2 different sizes. 2. The packing densities of likely arrangements. Philos Mag A 42:721–740CrossRefGoogle Scholar
  77. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science 270:1335–1338CrossRefGoogle Scholar
  78. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  79. Norris DJ, Arlinghaus EG, Meng LL, Heiny R, Scriven LE (2004) Opaline photonic crystals: how does self-assembly work? Adv Mater 16:1393–1399CrossRefGoogle Scholar
  80. Ohara PC, Gelbart WM (1998) Interplay between hole instability and nanoparticle array formation in ultrathin liquid films. Langmuir 14:3418–3424CrossRefGoogle Scholar
  81. Ohara PC, Leff DV, Heath JR, Gelbart WM (1995) Crystallization of opals from polydisperse nanoparticles. Phys Rev Lett 75:3466–3469CrossRefGoogle Scholar
  82. Ohara PC, Heath JR, Gelbart WM (1997) Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew Chem Int Ed 36:1078–1080CrossRefGoogle Scholar
  83. Ondarcuhu T, Millanrodriguez J, Mancini HL, Garcimartin A, Perezgarcia C (1993) Benard–Marangoni convective patterns in small cylindrical layers. Phys Rev E 48:1051–1057CrossRefGoogle Scholar
  84. Overgaag K, Evers W, de Nijs B, Koole R, Meeldijk J, Vanmaekelbergh D (2008) Binary superlattices of PbSe and CdSe nanocrystals. J Am Chem Soc 130:7833–7835CrossRefGoogle Scholar
  85. Park SJ, Lazarides AA, Mirkin CA, Letsinger RL (2001) Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew Chem Int Ed 40:2909–2912CrossRefGoogle Scholar
  86. Parthe E (1961) Space filling of crystal structures. A contribution to the graphical presentation of geometrical relationships in simple crystal structures. Z Kristallogr 115:52–79CrossRefGoogle Scholar
  87. Paul S, Pearson C, Molloy A, Cousins MA, Green M, Kolliopoulou S, Dimitrakis P, Normand P, Tsoukalas D, Petty MC (2003) Langmuir–Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures. Nano Lett 3:533–536CrossRefGoogle Scholar
  88. Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed 35:1155–1196Google Scholar
  89. Pieranski P (1983) Colloidal crystals. Contemp Phys 24:25–73CrossRefGoogle Scholar
  90. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu JD, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80–83CrossRefGoogle Scholar
  91. Prasad BLV, Sorensen CM, Klabunde KJ (2008) Gold nanoparticle superlattices. Chem Soc Rev 37:1871–1883CrossRefGoogle Scholar
  92. Pusey P (1991) Colloidal suspensions. In: Hansen JP, Devesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition. North Holland, Amsterdam, pp 763–931Google Scholar
  93. Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274CrossRefGoogle Scholar
  94. Redl FX, Cho KS, Murray CB, O’Brien S (2003) Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423:968–971CrossRefGoogle Scholar
  95. Sanders JV (1980) Close-packed structures of spheres of 2 different sizes. 1. Observations on natural opal. Philos Mag A 42:705–720CrossRefGoogle Scholar
  96. Sanders JV, Murray MJ (1978) Ordered arrangements of spheres of 2 different sizes in opal. Nature 275:201–203CrossRefGoogle Scholar
  97. Saunders AE, Korgel BA (2005) Observation of an AB phase in bidisperse nanocrystal superlattices. ChemPhysChem 6:61–65CrossRefGoogle Scholar
  98. Schmid EG (2004) Nanoparticles—from theory to applications. Wiley-VCH, WeinheimGoogle Scholar
  99. Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2002) Colloidal synthesis and self-assembly of COPt3 nanocrystals. J Am Chem Soc 124:11480–11485CrossRefGoogle Scholar
  100. Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin O, Svedlindh P, Haase M, Weller H (2003) Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals. J Am Chem Soc 125:9090–9101CrossRefGoogle Scholar
  101. Shevchenko EV, Talapin DV, O’Brien S, Murray CB (2005) Polymorphism in AB nanoparticle superlattices: an example of semiconductor-metal metamaterials. J Am Chem Soc 127:8741–8747CrossRefGoogle Scholar
  102. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006a) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59CrossRefGoogle Scholar
  103. Shevchenko EV, Talapin DV, Murray CB, O’Brien S (2006b) Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc 128:3620–3637CrossRefGoogle Scholar
  104. Shevchenko EV, Kortright JB, Talapin DV, Aloni S, Alivisatos AP (2007) Quasi-ternary nanoparticle superlattices through nanoparticle design. Adv Mater 19:4183–4188CrossRefGoogle Scholar
  105. Shevchenko EV, Ringler M, Schwemer A, Talapin DV, Klar TA, Rogach AL, Feldmann J, Alivisatos AP (2008) Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J Am Chem Soc 130:3274–3275CrossRefGoogle Scholar
  106. Shim M, Guyot-Sionnest P (1999) Permanent dipole moment and charges in colloidal semiconductor quantum dots. J Chem Phys 111:6955–6964CrossRefGoogle Scholar
  107. Smith AM, Nie SM (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200CrossRefGoogle Scholar
  108. Smith DK, Goodfellow B, Smilgies DM, Korgel BA (2009) Self-assembled simple hexagonal AB binary nanocrystal superlattices: SEM, GISAXS, and defects. J Am Chem Soc 131:3281–3290CrossRefGoogle Scholar
  109. Srivastava S, Santos A, Critchley K, Kim KS, Podsiadlo P, Sun K, Lee J, Xu CL, Lilly GD, Glotzer SC, Kotov NA (2010) Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327:1355–1359CrossRefGoogle Scholar
  110. Sukhanova A, Baranov AV, Perova TS, Cohen JHM, Nabiev I (2006) Controlled self-assembly of nanocrystals into polycrystalline fluorescent dendrites with energy-transfer properties. Angew Chem Int Ed 45:2048–2052CrossRefGoogle Scholar
  111. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRefGoogle Scholar
  112. Talapin DV, Shevchenko EV, Murray CB, Titov AV, Kral P (2007) Dipole–dipole interactions in nanoparticle superlattices. Nano Lett 7:1213–1219CrossRefGoogle Scholar
  113. Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye XC, Chen J, Murray CB (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964–967CrossRefGoogle Scholar
  114. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  115. Tanaka H (2000) Viscoelastic phase separation. J Phys Condens Mat 12:R207–R264CrossRefGoogle Scholar
  116. Tang J, Ge GL, Brus LE (2002a) Gas–liquid–solid phase transition model for two-dimensional nanocrystal self-assembly on graphite. J Phys Chem B 106:5653–5658CrossRefGoogle Scholar
  117. Tang ZY, Kotov NA, Giersig M (2002b) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240CrossRefGoogle Scholar
  118. Tang ZY, Zhang ZL, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278CrossRefGoogle Scholar
  119. Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233CrossRefGoogle Scholar
  120. Tao AR, Habas S, Yang PD (2008a) Shape control of colloidal metal nanocrystals. Small 4:310–325CrossRefGoogle Scholar
  121. Tao AR, Huang JX, Yang PD (2008b) Langmuir–Blodgettry of nanocrystals and nanowires. Acc Chem Res 41:1662–1673CrossRefGoogle Scholar
  122. Thiele U, Mertig M, Pompe W (1998) Dewetting of an evaporating thin liquid film: heterogeneous nucleation and surface instability. Phys Rev Lett 80:2869–2872CrossRefGoogle Scholar
  123. Tian YC, Fendler JH (1996) Langmuir-Blodgett film formation from fluorescence-activated, surfactant-capped, size-selected CdS nanoparticles spread on water surfaces. Chem Mater 8:969–974CrossRefGoogle Scholar
  124. Tran TB, Beloborodov IS, Lin XM, Bigioni TP, Vinokur VM, Jaeger HM (2005) Multiple cotunneling in large quantum dot arrays. Phys Rev Lett 95:076806/1–076806/4Google Scholar
  125. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858CrossRefGoogle Scholar
  126. Trizac E, Eldridge MD, Madden PA (1997) Stability of the AB crystal for asymmetric binary hard sphere mixtures. Mol Phys 90:675–678Google Scholar
  127. Urban JJ, Talapin DV, Shevchenko EV, Kagan CR, Murray CB (2007) Synergismin binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag-2 Te thin films. Nat Mater 6:115–121CrossRefGoogle Scholar
  128. van Blaaderen A, Ruel R, Wiltzius P (1997) Template-directed colloidal crystallization. Nature 385:321–324CrossRefGoogle Scholar
  129. Velev OD (2006) Self-assembly of unusual nanoparticle crystals. Science 312:376–377CrossRefGoogle Scholar
  130. Vlasov YA, Bo XZ, Sturm JC, Norris DJ (2001) On-chip natural assembly of silicon photonic bandgap crystals. Nature 414:289–293CrossRefGoogle Scholar
  131. Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3:1255–1259CrossRefGoogle Scholar
  132. Whitesides GM, Grzybowski BA (2002) Self-assembly at all scales. Science 295:2418–2421CrossRefGoogle Scholar
  133. Yan M, Zhang HT, Widjaja EJ, Chang RPH (2003) Self-assembly of well-aligned gallium-doped zinc oxide nanorods. J Appl Phys 94:5240–5246CrossRefGoogle Scholar
  134. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670CrossRefGoogle Scholar
  135. Zabet-Khosousi A, Dhirani AA (2008) Charge transport in nanoparticle assemblies. Chem Rev 108:4072–4124CrossRefGoogle Scholar
  136. Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA

Personalised recommendations