Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790(7):589–599. doi:10.1016/j.bbagen.2008.09.004
CAS
Google Scholar
Bhaviripudi S, Mile E, Steiner SA, Zare AT, Dresselhaus MS, Belcher AM, Kong J (2007) Cvd synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc 129(6):1516–1517. doi:10.1021/ja0673332
Article
CAS
Google Scholar
Butts CA, Swift J, Kang SG, Di Costanzo L, Christianson DW, Saven JG, Dmochowski IJ (2008) Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 47(48):12729–12739. doi:10.1021/bi8016735
Article
CAS
Google Scholar
Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540
Article
CAS
Google Scholar
Cherry RJ, Bjornsen AJ, Zapien DC (1998) Direct electron transfer of ferritin adsorbed at tin-doped indium oxide electrodes. Langmuir 14(8):1971–1973. doi:10.1021/la970685p
Article
CAS
Google Scholar
Chikae M, Fukuda T, Kerman K, Idegami K, Miura Y, Tamiya E (2008) Amyloid-[beta] detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry 74(1):118–123
Article
CAS
Google Scholar
Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. doi:10.1021/cr030698+
Article
Google Scholar
Domìnguez-Vera JM, Gálvez N, Sánchez P, Mota AJ, Trasobares S, Hernández JC, Calvino JJ (2007) Size-controlled water-soluble Ag nanoparticles. Eur J Inorg Chem 2007(30):4823–4826
Article
Google Scholar
Douglas T, Stark VT (2000) Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg Chem 39(8):1828–1830
Article
CAS
Google Scholar
Douglas T, Dickson DPE, Betteridge S, Charnock J, Garner CD, Mann S (1995) Synthesis and structure of an iron (iii) sulfide-ferritin bioinorganic nanocomposite. Science 269(5220):54–57
Article
CAS
Google Scholar
Ensign D, Young M, Douglas T (2004) Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin. Inorg Chem 43(11):3441–3446
Article
CAS
Google Scholar
Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11(9):3285–3287. doi:10.1021/la00009a002
Article
CAS
Google Scholar
Eustis S, Hsu H-Y, El-Sayed MA (2005) Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. J Phys Chem B 109(11):4811–4815. doi:10.1021/jp0441588
Article
CAS
Google Scholar
Fan RL, Chew SW, Cheong VV, Orner BP (2010) Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin. Small 6(14):1483–1487. doi:10.1002/smll.201000457
Article
CAS
Google Scholar
Galvez N, Sanchez P, Dominguez-Vera JM (2005) Preparation of Cu and CuFe Prussian blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton Trans 7(15):2492–2494. doi:10.1039/b506290j
Article
Google Scholar
Galvez N, Sanchez P, Dominguez-Vera JM, Soriano-Portillo A, Clemente-Leon M, Coronado E (2006) Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. J Mater Chem 16(26):2757–2761
Article
CAS
Google Scholar
Habib A, Tabata M, Wu YG (2005) Formation of gold nanoparticles by good’s buffers. Bull Chem Soc Jpn 78:262–269
Article
CAS
Google Scholar
Hainfeld JF (1992) Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Proc Natl Acad Sci USA 89(22):11064–11068
Article
CAS
Google Scholar
Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203
Article
Google Scholar
Hilton RJ, Keyes JD, Watt RK (2010a) Maximizing the efficiency of ferritin as a photocatalyst for applications in an artificial photosynthesis system. In: Varadan VK (ed) SPIE smart structures/NDE 2010, San Diego, CA. SPIE nanosensors, biosensors and info-tech sensors and systems. Proc. of SPIE, p 76460J
Hilton RJ, Keyes JD, Watt RK (2010b) Photoreduction of Au(III) to form Au(0) nanoparticles using ferritin as a photocatalyst. In: Varadan VK (ed) SPIE smart structures/NDE 2010, San Diego, CA. SPIE nanosensors, biosensors and info-tech sensors and systems. Proc. of SPIE, pp 764601–764607
Huang WC, Chen YC (2008) Photochemical synthesis of polygonal gold nanoparticles. J Nanopart Res 10(4):697–702. doi:10.1007/s11051-007-9293-8
Article
CAS
Google Scholar
Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44(18):6393–6400. doi:10.1021/ic0502426
Article
CAS
Google Scholar
Kasyutich O, Ilari A, Fiorillo A, Tatchev D, Hoell A, Ceci P (2010) Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin: structural and size-distribution analyses. J Am Chem Soc 132(10):3621–3627. doi:10.1021/ja910918b
Article
CAS
Google Scholar
Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43(45):6042–6108
Article
CAS
Google Scholar
Kim I, Hosein HA, Strongin DR, Douglas T (2002) Photochemical reactivity of ferritin for Cr(VI) reduction. Chem Mater 14(11):4874–4879
Article
CAS
Google Scholar
Kim JW, Posey AE, Watt GD, Choi SH, Lillehei PT (2010) Gold nanoshell assembly on a ferritin protein employed as a bio-template. J Nanosci Nanotechnol 10(3):1771–1777
Article
CAS
Google Scholar
Klem MT, Mosolf J, Young M, Douglas T (2008) Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. Inorg Chem 47(7):2237–2239
Article
CAS
Google Scholar
Kuong C-L, Chen W-Y, Chen Y-C (2007) Semi-quantitative determination of cationic surfactants in aqueous solutions using gold nanoparticles as reporter probes. Anal Bioanal Chem 387(6):2091–2099
Article
CAS
Google Scholar
Lee J-S, Ulmann PA, Han MS, Mirkin CA (2008) A DNA–gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8(2):529–533. doi:10.1021/nl0727563
Article
CAS
Google Scholar
Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643. doi:10.1021/ja034775u
Article
CAS
Google Scholar
Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45(1):90–94
Article
CAS
Google Scholar
Liu SF, Liu QY, Boerio-Goates J, Woodfield BF (2007) Preparation of a wide array of ultra-high purity metals, metal oxides, and mixed metal oxides with uniform particle sizes from 1 nm to bulk. J Adv Mater 39(2):18–23
CAS
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275
CAS
Google Scholar
Mallick K, Witcomb MJ, Scurrell MS (2005) Polymer-stabilized colloidal gold: a convenient method for the synthesis of nanoparticles by a UV-irradiation approach. Appl Phys A 80(2):395–398
Article
CAS
Google Scholar
Marken F, Patel D, Madden CE, Millward RC, Fletcher S (2002) The direct electrochemistry of ferritin compared with the direct electrochemistry of nanoparticulate hydrous ferric oxide. New J Chem 26(2):259–263
Article
CAS
Google Scholar
Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349(6311):684–687
Article
CAS
Google Scholar
Meldrum FC, Douglas T, Levi S, Arosio P, Mann S (1995) Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J Inorg Biochem 58(1):59–68
Article
CAS
Google Scholar
Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158
Article
CAS
Google Scholar
Nikandrov VV, Gratzel CK, Moser JE, Gratzel M (1997) Light induced redox reactions involving mammalian ferritin as photocatalyst. J Photochem Photobiol B 41(1–2):83–89
Article
CAS
Google Scholar
Okuda M, Iwahori K, Yamashita I, Yoshimura H (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 84(2):187–194
Article
CAS
Google Scholar
Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3(4):257–261
Article
CAS
Google Scholar
Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488
Article
CAS
Google Scholar
Shin Y, Dohnalkova A, Lin Y (2010) Preparation of homogeneous gold‚ and silver alloy nanoparticles using the apoferritin cavity as a nanoreactor. J Phys Chem C 114(13):5985–5989. doi:10.1021/jp911004a
Article
CAS
Google Scholar
Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007) Gold nanocages for biomedical applications. Adv Mater Deerfield 19(20):3177–3184. doi:10.1002/adma.200701972
Article
CAS
Google Scholar
Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760
Article
CAS
Google Scholar
Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207):981–983
Article
CAS
Google Scholar
Turyanska L, Bradshaw TD, Sharpe J, Li M, Mann S, Thomas NR, Patane A (2009) The biocompatibility of apoferritin-encapsulated PbS quantum dots. Small 5(15):1738–1741. doi:10.1002/smll.200900017
Article
CAS
Google Scholar
Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042
Article
CAS
Google Scholar
Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed 43(19):2527–2530
Article
CAS
Google Scholar
Watt GD, Jacobs D, Frankel RB (1988) Redox reactivity of bacterial and mammalian ferritin: is reductant entry into the ferritin interior a necessary step for iron release? Proc Natl Acad Sci USA 85(20):7457–7461
Article
CAS
Google Scholar
Watt RK, Frankel RB, Watt GD (1992) Redox reactions of apo mammalian ferritin. Biochemistry 31(40):9673–9679
Article
CAS
Google Scholar
Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405(6787):665–668
Article
CAS
Google Scholar
Wong KKW, Mann S (1996) Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Adv Mater 8(11):928–932
Article
CAS
Google Scholar
Xie J, Lee JY, Wang DIC (2007) Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in hepes buffer solution. Chem Mater 19(11):2823–2830. doi:10.1021/cm0700100
Article
CAS
Google Scholar
Yamashita I, Hayashi J, Hara M (2004) Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem Lett 33(9):1158–1159
Article
CAS
Google Scholar
Yang M, Kostov Y, Bruck HA, Rasooly A (2009) Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of staphylococcal enterotoxin b (SEB) in food. Int J Food Microbiol 133(3):265–271
Article
CAS
Google Scholar
Yeh CH, Hung CY, Chang TC, Lin HP, Lin YC (2009) An immunoassay using antibody-gold nanoparticle conjugate, silver enhancement and flatbed scanner. Microfluid Nanofluid 6(1):85–91. doi:10.1007/s10404-008-0298-0
Article
CAS
Google Scholar
Yoshizawa K, Iwahori K, Sugimoto K, Yamashita I (2006) Fabrication of gold sulfide nanoparticles using the protein cage of apoferritin. Chem Lett 35(10):1192–1193
Article
CAS
Google Scholar
Zhang B, Watt GD (2007) Anaerobic iron deposition into horse spleen, recombinant human heavy and light and bacteria ferritins by large oxidants. J Inorg Biochem 101(11–12):1676–1685
Article
CAS
Google Scholar
Zhang B, Harb JN, Davis RC, Kim JW, Chu SH, Choi S, Miller T, Watt GD (2005) Kinetic and thermodynamic characterization of the cobalt and manganese oxyhydroxide cores formed in horse spleen ferritin. Inorg Chem 44(10):3738–3745. doi:10.1021/ic049085l
Article
CAS
Google Scholar
Zhang L, Swift J, Butts CA, Yerubandi V, Dmochowski IJ (2007) Structure and activity of apoferritin-stabilized gold nanoparticles. J Inorg Biochem 101(11–12):1719–1729. doi:10.1016/j.jinorgbio.2007.07.023
Article
CAS
Google Scholar
Zhou Y, Wang CY, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater 11(9):2310–2312. doi:10.1021/cm990315h
Article
CAS
Google Scholar