Skip to main content
Log in

Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV–Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV–Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5–24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  Google Scholar 

  • Baker CC, Pradhan A, Shah SI (2004) Metal nanoparticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, pp 449–473

    Google Scholar 

  • Barnett H, Hunter BB (1972) Illustrated genera of imperfect fungi. Burgess Publishing Co, Broken Arrow

    Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Bautista-Baños S, Hernández-López M, Bosquez-Molina E, Wilson CL (2003) Effects of chitosan and plant extracts on growth of Colletotrichum gloesporioides, anthracnose levels and quality of papaya fruit. Crop Prot 22:1087–1092

    Article  Google Scholar 

  • Cho JW, So JH (2006) Polyurethane–silver fibers prepared by infiltration and reduction of silver nitrate. Mater Lett 60:2653–2656

    Article  CAS  Google Scholar 

  • Cho K, Park J, Osaka T, Park S (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Gamagae SU, Sivakumar D, Wilson Wijeratnam RS, Wijesundera RLC (2003) Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Prot 22:775–779

    Google Scholar 

  • Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Li P (2007) The influence of the cationic of quaternized chitosan on antifungal activity. Int J Food Microbiol 118:214–217

    Article  CAS  Google Scholar 

  • Jo Y, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim Y, Kim SB, Jung M, Sim S, Kim H, Chang S, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    Google Scholar 

  • Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448

    Article  CAS  Google Scholar 

  • Mitra A, Bhaumik A (2007) Nanoscale silver cluster embedded in artificial heterogeneous matrix consisting of protein and sodium polyacrylate. Mater Lett 61:659–662

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia-Ramirez J, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Muñoz Z, Moret A, Garces S (2009) Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Prot 28:36–40

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microb 73:1712–1720

    Article  CAS  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    Article  CAS  Google Scholar 

  • Petica S, Gavriliu M, Lungu N, Buruntea PanzaruC (2008) Colloidal silver solutions with antimicrobial properties. Mat Sci Eng B 152:22–27

    Article  CAS  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2008) Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull 43:90–96

    Article  CAS  Google Scholar 

  • Sondi S, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sun X, Luo Y (2005) Preparation and size control of silver nanoparticles by a thermal method. Mater Lett 59:3847–3850

    Article  CAS  Google Scholar 

  • Tan Y, Li Y, Zhu D (2004) Noble metal nanoparticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 8. American Scientific Publishers, USA, pp 9–40

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) through project no. 90019 and SIP project no. 20082511. The authors would like to thank Dr. Geonel Gattorno for the technical assistance in electron diffraction and FTIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Aguilar-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar-Méndez, M.A., San Martín-Martínez, E., Ortega-Arroyo, L. et al. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides . J Nanopart Res 13, 2525–2532 (2011). https://doi.org/10.1007/s11051-010-0145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0145-6

Keywords

Navigation