Skip to main content
Log in

Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1−x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2–WO3 thin film electrode with higher VO2 content (x ≥ 0.2). Increase of VO2 content in (WO3)1−x (VO2) x films leads to red shift in optical band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ashokkumar M, Maruthamuthu P (1989) Factors influencing the photocatalytic efficiency of WO3 particles. J Photochem Photobiol A Chem 49:249–258

    Article  CAS  Google Scholar 

  • Benthem KV, Tan G, Linda K, Noyer D, French RH, Ruhle M (2004) Local optical properties, electron densities, and London dispersion energies of atomically structured grain boundaries. Phys Rev Lett 93:227201–227204

    Article  Google Scholar 

  • Benthem KV, Tan G, French RH, Linda K, Noyer D, Podgornik R, Parsegian VA (2006) Graded interface models for more accurate determination of van der Waals—London dispersion interactions across grain boundaries. Phys Rev B 74:205110–205121

    Article  Google Scholar 

  • Christian GD, Purdy WC (1982) The residual current in orthophosphate medium. J Electroanal Chem 3:363–367

    Article  Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-Ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Didomenico M, Wemple SH (1969) Oxygen‐octahedra ferroelectrics. I. Theory of electro‐optical and nonlinear optical effects. J Appl Phys 40:720–734

    Article  CAS  Google Scholar 

  • Mitsugi F, Hiraiwa E, Ikegami T, Ebihara K (2003) Pulsed laser deposited WO3 thin films for gas sensor. Surf Coat Technol 169:553–556

    Article  Google Scholar 

  • Gerand B, Nowogrocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29:429–434

    Article  CAS  Google Scholar 

  • Gillet M, Lemire C, Gillet E, Aguir K (2003) The role of surface oxygen vacancies upon WO3 conductivity. Surf Sci 532:519–525

    Article  Google Scholar 

  • Gondal MA, Drmosh QA, Yamani ZH, Saleh TA (2009) Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl Surf Sci 256:298–304

    Article  CAS  Google Scholar 

  • Gondal MA, Drmosh QA, Saleh TA (2010) Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Appl Surf Sci 256:7067–7070

    Article  CAS  Google Scholar 

  • Granqvist CG (1990) Window coatings for the future. Thin Solid Films 193:730–741

    Article  Google Scholar 

  • Granqvist CG (1991) Energy-efficient windows: present and forthcoming technology in Material Science for Solar Energy Conversion Systems. Pergamon, Oxford, Chp. 5

  • Granqvist CG, Avendano E, Azens A (2003) Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 442:201–211

    Article  CAS  Google Scholar 

  • Gyorgy E, Socol G, Mihailescu IN, Ducu C, Ciuca S (2005) Structural and optical characterization of WO3 thin films for gas sensor applications. J Appl Phys 97:093527–093530

    Article  Google Scholar 

  • Hersh HN, Kramer WE, McGee JH (1975) Mechanism of electrochromism in WO3. Appl Phys Lett 27:646–648

    Article  CAS  Google Scholar 

  • Hussain OM, Swapnasmitha AS, John J, Pinto R (2005) Structure and morphology of laser-ablated WO3 thin films. Appl Phys A 81:1291–1297

    Article  CAS  Google Scholar 

  • Ingham B, Hendy SC, Chong SV, Tallon JL (2005) Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys Rev B 72:075109–075117

    Article  Google Scholar 

  • Ito K, Nakzaewa T (1983) Transparent and highly conductive films of ZnO prepared by RF sputtering. Jpn J Appl Phys 22:L245–L247

    Article  Google Scholar 

  • Jelle BP, Hagen G (1999) Performance of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Sol Energy Mater Sol Cells 58:277–286

    Article  CAS  Google Scholar 

  • Kaneko H, Nagao F, Miyake K (1988) Preparation and properties of the dc reactively sputtered tungsten oxide films. J Appl Phys 63:510–517

    Article  CAS  Google Scholar 

  • Kaur D, Jesudasan J, Raychaudhuri P (2005) Pulsed laser deposition of NdNiO3 thin films. Solid State Commun 136:369–374

    Article  CAS  Google Scholar 

  • Kumagai N, Kumagai N, Umetzu Y, Tanno K, Pereira-Ramos JP (1996) Synthesis of hexagonal form of tungsten trioxide and electrochemical lithium insertion into the trioxide. Solid State Ionics 86:1443–1449

    Article  Google Scholar 

  • Kumar A, Singh P, Kaur D, Jesudasan J, Raychaudhuri P (2006) Substrate effect on electrical transport properties of RNiO3 thin films prepared by pulsed laser deposition. J Phys D Appl Phys 39:5310–5315

    Article  CAS  Google Scholar 

  • Lee KH, Fang YK, Lee WJ, Ho JJ, Chen KH, Liao KS (2000) Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sens Actuators B 69:96–99

    Article  Google Scholar 

  • Lethy KJ, Beena D, Kumar RV, Pillai VPM, Ganesan V, Sathe V, Phase DM (2008) Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique. Appl Phys A 91:637–649

    Article  CAS  Google Scholar 

  • Marquez E, Bernal-Oliva AM, Gonzalez-Leal JM, Pricto-Alcon R, Ledesma A, Jimenez-Garay R, Martil I (1999) Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1–1.8 eV). Mater Chem Phys 60:231–239

    Article  CAS  Google Scholar 

  • Ohring M (2002) Material science of thin films. Academic Press, San Diego

    Google Scholar 

  • Ozer N, Lampert CM (1998) Electrochromic characterization of sol–gel deposited coatings. Sol Energy Mater Sol Cells 54:147–156

    Article  CAS  Google Scholar 

  • Pecquenard B, Lecacheux H, Livage J, Julien C (1998) Orthorhombic WO3 formed via a Ti-Stabilized WO3 \( \frac{1}{3} \)H2O Phase. J Solid State Chem 135:159–168

    Article  CAS  Google Scholar 

  • Pickering R, Tilley RJD (1976) An electron microscope study of tungsten oxides in the composition range WO2.90–2.72. J Solid State Chem 16:247–255

    Article  CAS  Google Scholar 

  • Poirier G, Cassanjes FC, Messaddeq Y, Ribeiro SJL (2009) Crystallization of monoclinic WO3 in tungstate fluorophosphate glasses. J Non-Cryst Solids 355:441–446

    Article  CAS  Google Scholar 

  • Qu WM, Wlodarski W (2000) A thin-film sensing element for ozone, humidity and temperature. Sens Actuators B 64:42–48

    Article  Google Scholar 

  • Ranjbar M, Mahdavi SM, Iraji zad A (2008) Pulsed laser deposition of W-V-O composite films: Preparation, characterization and gasochromic studies. Sol Energy Mater Sol Cells 92:878–883

    Article  CAS  Google Scholar 

  • Regragui M, Jousseaume V, Addou M, Outzourhit A, Bernede JC, El Idrissi B (2001) Electrical and optical properties of WO3 thin films. Thin Solid Films 397:238–243

    Article  CAS  Google Scholar 

  • Robert GP, Ivan PP (2004) Aerosol assisted chemical vapour deposition of photochromic tungsten oxide and doped tungsten oxide thin films. J Mater Chem 14:2864–2867

    Article  Google Scholar 

  • Rougier A, Quede A (2001) Electrochromism of mixed tungusten-vanadium oxide thin films grown by pulsed laser deposition. J Electrochem Soc 148:H7–H12

    Article  CAS  Google Scholar 

  • Rougier A, Portemer F, Quede A, Marssi ME (1999) Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Appl Surf Sci 153:1–9

    Article  CAS  Google Scholar 

  • Rougier A, Blyr A, Garcia J, Zhang Q, Impey SA (2002) Electrochromic W-M-O (M=V, Nb) sol-gel thin films: a way to neutral colour. Sol Energy Mater Sol Cells 71:343–357

    Article  CAS  Google Scholar 

  • Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C (2007) Preparation and characterization of electron beam evaporated WO3 thin films. Opt Mat 29:679–687

    Article  CAS  Google Scholar 

  • Takami H, Kanki T, Ueda S, Kobayashi K, Tanaka H (2010) Electronic structure of W-doped VO2 thin films with giant metal–insulator transition investigated by hard X-ray core-level photoemission spectroscopy. Appl Phys Express 3:063201–063203

    Article  Google Scholar 

  • Tauc J (1974) Amorphous and liquid semiconductor. Plenium Press, New York

    Google Scholar 

  • Walkingshaw AD, Spaldin NA, Artacho E (2004) Density-functional study of charge doping in WO3. Phys Rev B 70:165110–165116

    Article  Google Scholar 

  • Wemple SH, Didomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3:1338–1351

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Ministry of Communications and Information Technology (MIT), India under the Nanotechnology Initiative Program, Reference no. 20(11)/2007-VCND and Armament Research Board (ARMREB), DRDO New Delhi with reference number ARMREB/MAA/2008/91, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinder Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, A., Kaur, D. Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique. J Nanopart Res 13, 2485–2496 (2011). https://doi.org/10.1007/s11051-010-0141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0141-x

Keywords

Navigation