Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 45–51 | Cite as

Surface modification of permalloy (Ni80Fe20) nanoparticles for biomedical applications

  • Gaowu W. Qin
  • Farzana Darain
  • Hui Wang
  • Krassen Dimitrov
Brief communication

Abstract

We report a simple and novel method for surface biofunctionalization onto recently reported Ni80Fe20 permalloy nanoparticles (~71 nm) and the immobilization of a model protein, IgG from human serum. The strategy of protein immobilization involved attachment of histidine-tagged streptavidin to the Ni80Fe20 nanoparticles via a non-covalent ligand binding followed by biotinylated human IgG binding on the nanoparticle surface using the specific high affinity avidin–biotin interaction. The biofunctionalization of Ni80Fe20 permalloy nanoparticles was confirmed by Fourier Transform InfraRed (FTIR) spectroscopy and protein denaturing gel electrophoresis (lithium dodecyl sulfate-polyacrylamide gel electrophoresis, LDS-PAGE). This protocol for surface functionalization of the novel nanometer-sized Ni80Fe20 permalloy particles with biological molecules could open diverse applications in disease diagnostics and drug delivery.

Keywords

Ni80Fe20 permalloy Magnetic nanoparticles Protein immobilization Avidin–biotin bridge Gel electrophoresis Nanomedicine 

Supplementary material

11051_2010_101_MOESM1_ESM.doc (478 kb)
Supplementary material 1 (DOC 478 kb)

References

  1. Cai Qi C, Lin Y, Feng J, Wang Z-H, Zhu C-F, Meng Y-H, Yan X-Y, Wan L-J, Jin G (2009) Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation. Virus Res 140:79–84. doi:10.1016/j.virusres.2008.11.010 CrossRefGoogle Scholar
  2. Chanana M, Mao ZW, Wang DY (2009) Using polymers to make up magnetic nanoparticles for biomedicine. J Biomed Nanotechnol 5:652–668. doi:10.1166/jbn.2009.1082 CrossRefGoogle Scholar
  3. Couvreur P, Puisieu X (1993) Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 10:141–162CrossRefGoogle Scholar
  4. Darain F, Park S-U, Shim Y-B (2003) Disposable amperometric immunosensor system for Rabbit IgG using a conducting polymer modified screen-printed electrode. Biosens Bioelectron 18:773–780. doi:10.1016/S0956-5663(03)00004-6 CrossRefGoogle Scholar
  5. Dave SR, Gao XH (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdiscip Rev Nanomed Nanotechnol 1:583–609CrossRefGoogle Scholar
  6. Gan Z-F, Jiang J-S, Yang Y, Du B, Qian M, Zhang P (2008) Immobilization of homing peptide on magnetic nanoparticles and its specificity in vitro. J Biomed Mater Res A 84A:10–18. doi:10.1002/jbm.a.31181 CrossRefGoogle Scholar
  7. Jang JH, Lim HB (2010) Characterization and analytical application of surface modified magnetic nanoparticles. Microchem J 94:148–158. doi:10.1016/j.microc.2009.10.011 CrossRefGoogle Scholar
  8. Janolino VG, Fontecha J, Swaisgood HE (1995) A spectrophotometirc assay for biotin-binding sites of immobilized avidin. Appl Biochem Biotechnol 56:1–7CrossRefGoogle Scholar
  9. Johnston-Peck AC, Wang J, Tracy JB (2009) Synthesis and structural and magnetic characterization of Ni(Core)/NiO(Shell) nanoparticles. ACS Nano 3:1077–1084. doi:10.1021/nn900019x CrossRefGoogle Scholar
  10. Lee IS, Lee N, Park J, Kim BH, Yi Y-W, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128:10658–10659. doi:10.1021/ja063177n CrossRefGoogle Scholar
  11. LeVine H (2006) Biotin-avidin interaction-based screening assay for Alzheimer’s beta-peptide oligomer inhibitors. Anal Biochem 356:265–272. doi:10.1016/j.ab.2006.04.036 CrossRefGoogle Scholar
  12. Li J, Gao H, Chen Z, Wei X, Yang CF (2010) An electrochemical immunosensor for carcinoembryonic antigen enhanced by self-assembled nanogold coatings on magnetic particles. Anal Chim Acta 665:98–104. doi:10.1016/j.aca.2010.03.020 CrossRefGoogle Scholar
  13. Liu Z, Galli F, Janssen KGH, Jiang L, van der Linden HJ, de Geus DC, Voskamp P, Kuil ME, Olsthoorn RCL, Oosterkamp TH, Hankemeier T, Abrahams JP (2010) Stable single-walled carbon nanotube−streptavidin complex for biorecognition. J Phys Chem C 114:4345–4352. doi:10.1021/jp911441d CrossRefGoogle Scholar
  14. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:122–1244. doi:10.1002/anie.200602866 Google Scholar
  15. Ma YH, Manolache S, Denes FS, Thamm DH, Kurzman ID, Vail DM (2004) Plasma synthesis of carbon magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J Biomater Sci Polym Ed 15:1033–1049. doi:10.1163/1568562041526441 CrossRefGoogle Scholar
  16. Nam J-M, Han SW, Lee K-B, Liu X, Ratner MA, Mirkin CA (2004) Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew Chem Int Ed 43:1246–1249. doi:10.1002/anie.200353203 CrossRefGoogle Scholar
  17. Nidumolu BG, Urbina MC, Hormes J, Kumar CSSR, Monroe WT (2006) Functionalization of gold and glass surfaces with magnetic nanoparticles using biomolecular interactions. Biotechnol Prog 22:91–95. doi:10.1021/bp050165h CrossRefGoogle Scholar
  18. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh H-J, Park J-H, Bae CJ, Park J-G, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434. doi:10.1002/adma.200400611 CrossRefGoogle Scholar
  19. Pham TTH, Cao C, Sim SJ (2008) Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J Magn Magn Mater 320:2049–2055. doi:10.1016/j.jmmm.2008.03.015 CrossRefGoogle Scholar
  20. Qin GW, Pei WL, Ren YP, Shimada Y, Endo Y, Yamaguchi M, Okamoto S, Kitakami O (2009) Ni80Fe20 permalloy nanoparticles: wet chemical preparation, size control and their dynamic permeability characteristics when composited with Fe micron particles. J Magn Magn Mater 321:4057–4062. doi:10.1016/j.jmmm.2009.08.004 CrossRefGoogle Scholar
  21. Sestier C, Da-Silva MF, Sabolovic D, Roger J, Pons JN (1998) Surface modification of supermagnetic nanoparticles (Ferrofluid) studies with particle electrophoresis: application to the specific targeting of cells. Electrophoresis 19:1220–1226. doi:10.1002/elps.1150190725 CrossRefGoogle Scholar
  22. Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613. doi:10.1016/S1389-1723(02)80202-X Google Scholar
  23. Shubayev VI, Pisanic TR, Jin SH (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477. doi:10.1016/j.addr.2009.03.007 CrossRefGoogle Scholar
  24. Stoeva SI, Lee J-S, Smith JE, Rosen ST, Mirkin CA (2006) Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J Am Chem Soc 128:8378–8379. doi:10.1021/ja0613106 CrossRefGoogle Scholar
  25. Tang DP, Yuan R, Chai YQ (2006) Direct electrochemical immunoassay based on immobilization of protein-magnetic nanoparticle composites on to magnetic electrode surfaces by sterically enhanced magnetic field force. Biotechnol Lett 28:559–569. doi:10.1007/s10529-006-0017-4 CrossRefGoogle Scholar
  26. Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nanotoday 1:28–37. doi:10.1016/S1748-0132(06)70020-2 Google Scholar
  27. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304CrossRefGoogle Scholar
  28. Wang S, Mamedova N, Kotov NA, Chen W, Studer J (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2:817–822. doi:10.1021/nI0255193 CrossRefGoogle Scholar
  29. Yang M, Yang Y, Qu F, Lu Y, Shen G, Yu R (2006) Attachment of nickel hexacyanoferrates nanoparticles on carbon nanotubes: preparation, characterization and bioapplication. Anal Chim Acta 571:211–217. doi:10.1016/j.aca.2006.04.061 CrossRefGoogle Scholar
  30. Zhuo Y, Yuan P-X, Yuan R, Chai Y-Q, Hong C-L (2009) Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30:2284–2290. doi:10.1016/j.biomaterials.2009.01.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gaowu W. Qin
    • 1
  • Farzana Darain
    • 2
  • Hui Wang
    • 2
  • Krassen Dimitrov
    • 2
  1. 1.Key Laboratory for Anisotropy and Texture of Materials (MOE)Northeastern UniversityShenyangChina
  2. 2.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaAustralia

Personalised recommendations