Skip to main content
Log in

Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bionanoconjugates of the enzyme tyrosinase (TYR) and gold nanoparticles (AuNPs) functionalised with a peptide (CALNN) were produced in solution and characterised. The formation of stable TYR–AuNP:CALNN bionanoconjugates (BNCs) was supported by a decrease of the surface charge of the BNCs as determined by ζ-potential and an increase in hydrodynamic diameter as determined by Dynamic Light Scattering (DLS). UV/Vis studies of pH-induced aggregation revealed distinct protonation patterns for the BNCs when compared with AuNP:CALNN alone, further substantiating BNC formation. Activity studies of the BNCs for the reduction of di-phenols in solution indicated that TYR not only remains active after conjugation, but interestingly its activity in the BNCs is higher than for the free enzyme. In conclusion, AuNP:CALNN can provide a suitable platform for the immobilisation of TYR, leading to BNCs with increased enzyme activity and a wider pH working range, with promising uses in electrochemical biosensors for the detection of mono- and di-phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah J, Ahmad M, Karuppiah N, Heng LY, Sidek H (2006) Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens Actuators B Chem 114:604–609

    Article  Google Scholar 

  • Baptista P, Doria G, Henriques D, Pereira E, Franco R (2005) Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 119:111–117

    Article  CAS  Google Scholar 

  • Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391(3):943–950

    Article  CAS  Google Scholar 

  • Baron R, Willner B, Willner I (2007) Biomolecule–nanoparticle hybrids as functional units for nanobiotechnology. Chem Commun 28:323–332

    Article  Google Scholar 

  • Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307

    Article  CAS  Google Scholar 

  • Dzyadevych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon JM, Georgiou CA, Martelet C, Jaffrezic-Renault N (2005) Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens Actuators B Chem 105:81–87

    Article  Google Scholar 

  • Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int J Pept Protein Res 35:161–214

    Article  CAS  Google Scholar 

  • Gomes I, Santos NC, Oliveira LMA, Quintas A, Eaton P, Pereira E, Franco R (2008) Probing surface properties of cytochrome c at Au bionanoconjugates. J Phys Chem C 112:16340–16347

    Article  CAS  Google Scholar 

  • Hedenmo M, Narvaez A, Dominguez E, Katakis I (1997) Improved mediated tyrosinase amperometric enzyme electrodes. J Electroanal Chem 425:1–11

    Article  CAS  Google Scholar 

  • Huang M, Ho T, Lee C (1992) Phenolic compounds in food and their effects on health. Antioxidants and cancer prevention. ACS, Washington

    Book  Google Scholar 

  • Jolivet S, Arpin N, Wichers HJ, Pellon G (1998) Agaricus bisporus browning: a review. Mycol Res 102:1459–1483

    Article  CAS  Google Scholar 

  • Kaiser E, Colescot RL, Bossinge CD, Cook PI (1970) Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  CAS  Google Scholar 

  • Kaufman E et al (2007) Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and zeta-potential measurements. Langmuir 23:6053–6062

    Article  CAS  Google Scholar 

  • Kim GY, Kang MS, Shim J, Moon SH (2008a) Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor. Sens Actuators B Chem 133:1–4

    Article  Google Scholar 

  • Kim GY, Shim J, Kang MS, Moon SH (2008b) Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level. J Environ Monitor 10:632–637

    Article  CAS  Google Scholar 

  • Kim GY, Shim J, Kang MS, Moon SH (2008c) Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples. J Hazard Mater 156:141–147

    Article  CAS  Google Scholar 

  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707

    Article  CAS  Google Scholar 

  • Levy R (2006) Peptide-capped gold nanoparticles: towards artificial proteins. Chembiochem 7:1141–1145

    Article  CAS  Google Scholar 

  • Levy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) Rational and combinatorial design of peptide capping Ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084

    Article  CAS  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  • Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Article  CAS  Google Scholar 

  • Robb D (1984) Tyrosinase. In: Lontie R (ed) Copper proteins and copper enzymes, vol 2. CRC Press Inc., Boca Raton, pp 207–240

    Google Scholar 

  • Rodriguez-Lopez J, Tudela J, Varon R, Garcia-Carmona F, Garcia-Canovas F (1992) Analysis of a kinetic model for melanin biosynthesis pathway. J Biol Chem 267:3801–3810

    CAS  Google Scholar 

  • Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533–541

    Article  CAS  Google Scholar 

  • Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens Bioelectron 22:3146–3153

    Article  CAS  Google Scholar 

  • Selinheimo E, Gasparetti C, Mattinen M, Steffensen C, Buchert J, Kruus K (2009) Comparison of substrate specificity of tyrosinases from Trichoderma reesei and Agaricus bisporus. Enzyme Microb Technol 44:1–10

    Article  CAS  Google Scholar 

  • Sfinchez-Ferrer A, Rodriguez-Lopez J, Garcia-Cfinovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11

    Article  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853

    Article  CAS  Google Scholar 

  • VanGelder CWG, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45:1309–1323

    Article  CAS  Google Scholar 

  • Vidal JC, Esteban S, Gil J, Castillo JR (2006) A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 68:791–799

    Article  CAS  Google Scholar 

  • Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sens Actuators B Chem 115:150–157

    Article  Google Scholar 

  • Wang SS (1973) Para-Alkoxybenzyl alcohol resin and para-Alkoxybenzyloxycarbonylhydrazide resin for solid-phase synthesis of protected peptide fragments. J Am Chem Soc 95:1328–1333

    CAS  Google Scholar 

  • Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852

    Article  CAS  Google Scholar 

  • You CC, Verma A, Rotello VM (2006) Engineering the nanoparticle-biomacromolecule interface. Soft Matter 2:190–204

    Article  CAS  Google Scholar 

  • Yu HH, Liu SQ, Ju HX (2003) Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens Bioelectron 19:509–514

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cortez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortez, J., Vorobieva, E., Gralheira, D. et al. Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds. J Nanopart Res 13, 1101–1113 (2011). https://doi.org/10.1007/s11051-010-0099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0099-8

Keywords

Navigation