Journal of Nanoparticle Research

, Volume 13, Issue 3, pp 959–971 | Cite as

Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity

  • E. MunnierEmail author
  • S. Cohen-Jonathan
  • K. Hervé
  • C. Linassier
  • M. Soucé
  • P. Dubois
  • I. Chourpa
Research Paper


The clinical use of the anticancer drug doxorubicin (DOX) is limited by strong side effects and phenomena of cell resistance. Drug targeting by binding DOX to nanoparticles could overcome these limitations. We recently described a method to associate DOX to superparamagnetic iron oxide nanoparticles (SPION) in view of magnetic drug targeting (Munnier et al. in Int J Pharm 363:170–176, 2008). DOX is bound to the nanoparticle surface through a pre-formed DOX–Fe2+ complex. The DOX-loaded SPION present interesting properties in terms of drug loading and biological activity in vitro. The purpose of this study is to explore the possible mechanisms of the in vitro cytotoxicity of DOX-loaded SPION. The uptake of SPION was followed qualitatively by conventional optical microscopy after Prussian blue staining and quantitatively by iron determination by atomic absorption spectroscopy. The subcellular distribution of intrinsically fluorescent DOX was followed by confocal spectral imaging (CSI) and the subsequent cytotoxicity by the MTT method. We reveal modifications of DOX intracellular interactions for SPION-delivered drug and increased cytotoxicity. These results are discussed in terms of internalization route of the drug and of a potential role of iron oxide nanoparticles in the observed cytotoxicity.


Magnetic drug targeting Doxorubicin Cytotoxicity MCF-7 cells Confocal spectral imaging Nanomedicine 



This study was supported in part by grants from the Ligue Nationale contre le Cancer (Comités Indre-et-Loire, Loir-et-Cher, Indre), France and from the Region Centre, France (NANOMAG Project).


  1. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648Google Scholar
  2. Anderson AB, Gergen J, Arriaga EA (2002) Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 769:97–106CrossRefGoogle Scholar
  3. Apopa PL, Qian Y, Shao R, Lan Gua N, Schwegler-Berry N, Pacurari M, Porter D, Shi X, Vallyathan V, Castranova V, Flynn DC (2009) Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodelling. Part fibre toxicol 6:1–14CrossRefGoogle Scholar
  4. Aroui S, Brahim S, De Waard M, Bréard J, Kenani A (2009) Efficient induction of apoptosis dy doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett 285:28–38CrossRefGoogle Scholar
  5. Aroui S, Brahim S, Kenani A (2010) Cytotoxicity, intracellular distribution and uptake of doxorubicin and doxorubicin coupled to cell penetrating peptides in different cell lines: a comparative study. BBRC. doi: 10.1016/j.bbrc.2009.11.073
  6. Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133CrossRefGoogle Scholar
  7. Belhoussine R, Morjani H, Millot JM, Sharonov S, Manfait M (1998) Microspectrofluorometry reveals specific anthracycline accumulation in cytoplasmic organelles of multidrug-resistant cancer cells. J Histochem Cytochem 46:1369–1376Google Scholar
  8. Choi SJ, Oh JM, Choy JH (2009) Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103:463–471CrossRefGoogle Scholar
  9. Chourpa I, Douziech-Eyrolles L, Ngaboni Okassa L, Fouquenet JF, Cohen-Jonathan S, Soucé M, Marchais H, Dubois P (2005) Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130:1395–1403CrossRefGoogle Scholar
  10. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44CrossRefGoogle Scholar
  11. del Pozo-Rodríguez A, Pujals S, Delgado D, Solinís MA, Gascón AR, Giralt E, Pedraz JL (2009) A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Control Release 133:52–59CrossRefGoogle Scholar
  12. Demaurex N, Grinstein S (2006) Measurements of endosomal pH in live cells by dual excitation fluorescence imaging. In: Cell Biol, 3rd edn. pp 163–169Google Scholar
  13. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58:211–216Google Scholar
  14. Douziech-Eyrolles L, Marchais H, Hervé K, Munnier E, Soucé M, Linassier C, Dubois P, Chourpa I (2007) Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomed 2(4):541–550Google Scholar
  15. Ebbesen P, Pettersen EO, Gorr TA, Jobst G, Williams K, Kieninger J, Wenger RH, Pastorekova S, Dubois L, Lambin P, Wouters BG, Van Den Beucken T, Supuran CT, Poellinger L, Ratcliffe P, Kanopka A, Görlach A, Gasmann M, Harris AL, Maxwell P, Scozzafava A (2009) Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhibit Med Chem 24(1):1–39Google Scholar
  16. Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30:603–610CrossRefGoogle Scholar
  17. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumors. Int J Hypertherm 11:211–216CrossRefGoogle Scholar
  18. Fiallo MML, Garnier-Suillerot A, Matzanke B, Kozlowski H (1999) How Fe3+ binds anthracycline antitumour compounds. The myth and the reality of a chemical sphinx. J Inorg Biochem 75:105–115CrossRefGoogle Scholar
  19. Gabrielson NP, Pack DW (2009) Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release 136:54–61CrossRefGoogle Scholar
  20. Gallois L, Fiallo M, Laigle A, Priebe W, Garnier-Suillerot A (1996) The overall partitioning of anthracyclines into phosphatidyl-containing model membranes depends neither on the drug charge nor the presence of anionic phospholipids. Eur J Biochem 241:879–887CrossRefGoogle Scholar
  21. Ge Y, Zhang Y, Xia J, He S, Nie F, Gu N (2009) Effect of surface charge and agglomerate degree of magnetic iron nanoparticles on KB cellular uptake in vitro. Colloid Surf B Biointerfaces 73:294–301CrossRefGoogle Scholar
  22. Glait C, Ravid D, Lee SW, Liscovitch M, Werner H (2006) Caveolin-1 controls BRCA1 gene expression and cellular localization in human breast cancer cells. FEBS Lett 580:5268–5274CrossRefGoogle Scholar
  23. Gumbleton M, Hollins AJ, Omidi Y, Campbell L, Taylor G (2003) Targeting caveolae for vesicular drug transport. J control release 87:139–151CrossRefGoogle Scholar
  24. Hande KR (2006) Topoisomerase II inhibitors. Update Cancer Therap 1:3–15CrossRefGoogle Scholar
  25. Hovorka O, St’astny M, Etrych T, Subr V, Strohalm J, Ulbrich K, Rihova B (2002) Differences in the intracellular fate of free and polymer-bound doxorubicin. J Control Release 80:101–117Google Scholar
  26. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205CrossRefGoogle Scholar
  27. Jing Y, Naladri M, Williams PS, Mayorga M, Penn MS, Chalmers JJ, Zborowski M (2008) Quantitative intracellular magnetic nanoparticles uptake measured by live cell magnetophoresis. FASEB J 22:4239–4247CrossRefGoogle Scholar
  28. Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456CrossRefGoogle Scholar
  29. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732CrossRefGoogle Scholar
  30. Karukstis K, Thompson EHZ, Whiles JA, Rosenfeld RJ (1998) Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys Chem 73:249–263CrossRefGoogle Scholar
  31. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS (2000) Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64:143–153CrossRefGoogle Scholar
  32. Leonard RCF, Williams S, Tulpule A, Levine AM, Oliveros S (2009) Improving the therapeutic index of anthracyclines chemotherapy: focus on liposomal doxorubicin (Myocet®). Breast 18:218–224CrossRefGoogle Scholar
  33. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49CrossRefGoogle Scholar
  34. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693Google Scholar
  35. Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Troeve P (2009) A new approach for the in vitro identification of the cytotoxicity of Superparamagnetic iron oxide nanoparticles. Colloid Surf B Biointerfaces 75:300–309CrossRefGoogle Scholar
  36. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRefGoogle Scholar
  37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  38. Mudhakir D, Akita H, Tan E, Harashima H (2008) A novel IRQ ligand-modified nano-carrier targeted to a unique pathway of caveolar endocytic pathway. J Control Release 125(2):164–173CrossRefGoogle Scholar
  39. Munnier E, Tewes F, Cohen-Jonathan S, Linassier C, Douziech-Eyrolles L, Marchais H, Soucé M, Hervé K, Dubois P, Chourpa I (2007) On the interaction of doxorubicin with oleate ions: fluorescence spectroscopy and liquid-liquid extraction study. Chem Pharm Bull 55:1006–1010CrossRefGoogle Scholar
  40. Munnier E, Cohen-Jonathan S, Linassier C, Douziech-Eyrolles L, Marchais H, Soucé M, Hervé K, Dubois P, Chourpa I (2008) Novel method of doxorubicin—SPION reversible association for magnetic drug targeting. Int J Pharm 363:170–176CrossRefGoogle Scholar
  41. Mykhaylyk O, Dudchenko N, Dudchenko A (2005) Doxorubicin magnetic conjugate targeting upon intravenous injection into mice: high gradient magnetic field inhibits the clearance of nanoparticles from the blood. J Magn Magn Mater 293:473–482CrossRefGoogle Scholar
  42. Pelkmans L, Helenius A (2003) Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422CrossRefGoogle Scholar
  43. Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D (2007) Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J Magn Magn Mater 311:282–287CrossRefGoogle Scholar
  44. Pütz G, Schmah O, Eckes J, Hug MJ, Winkler K (2009) Controlled application and scheduled removal of nanoparticle based chemotherapeutics (CARL) will reduce dose limiting adverse events in anticancer chemotherapy. Med Hypothesis doi: 10.1016/j.mehy.2008.11.027
  45. Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66:1219–1229CrossRefGoogle Scholar
  46. Razzano G, Rizzo V, Vigevani A (1990) Determination of phenolic ionization constants of anthracyclines with modified substitution pattern of anthraquinone chromophore. IL Farmaco 45:215–222Google Scholar
  47. Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21:1411–1420CrossRefGoogle Scholar
  48. Schöpf B, Neuberger T, Schulze K, Petri A, Chastellain M, Hoffmann M, Hoffmann H, von Rechenberg B (2005) Methodology description of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep. J Magn Magn Mater 293:411–418CrossRefGoogle Scholar
  49. Sharonov S, Chourpa I, Morjani H, Nabiev I, Manfait M, Feofanov A (1994) Confocal spectral imaging analysis in studies of the spatial distribution of antitumor drugs within living cancer cells. Anal Chim Acta 290:40–47CrossRefGoogle Scholar
  50. Shen Y, Tang H, Zhan Y, Van Kirk EA, Murdoch WJ (2009) Degradable poly(β-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine doi: 10.1016/j.nano.2008.09.003
  51. Vibet S, Mahéo K, Goré J, Dubois P, Bougnoux P, Chourpa I (2007) Differential subcellular distribution of mitoxantrone in relation to chemosensitization in two human breast cancer cell lines. Drug Metab Disp 35:822–828CrossRefGoogle Scholar
  52. Vieseh O, Gunn J, Zhang M (2009) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv drug deliv rev. doi: 10.1016/j.addr.2009.11.002
  53. Wilhelm C, Gazeau F (2008) Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29:3161–3174CrossRefGoogle Scholar
  54. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011CrossRefGoogle Scholar
  55. Xiong XB, Ma Z, Lai R, Lavasanifar A (2010) The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Biomaterials 31:757–768CrossRefGoogle Scholar
  56. Zhang J, Misra RDK (2007) Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticles carrier and drug release response. Acta Biomater 3:838–850CrossRefGoogle Scholar
  57. Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328CrossRefGoogle Scholar
  58. Zhang X, Meng L, Lu Q, Fei Z, Dyson P (2009) Targeted and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30:6041–6047CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • E. Munnier
    • 1
    • 2
    • 4
    Email author
  • S. Cohen-Jonathan
    • 1
    • 2
  • K. Hervé
    • 1
    • 2
  • C. Linassier
    • 1
    • 2
    • 3
  • M. Soucé
    • 1
    • 2
  • P. Dubois
    • 1
    • 2
  • I. Chourpa
    • 1
    • 2
  1. 1.Université François-Rabelais, EA 4244 «Physico-Chimie des Matériaux et des Biomolécules», Groupe thématique «Nanovecteurs Magnétiques pour la Chimiothérapie»ToursFrance
  2. 2.Institut Fédératif de Recherche 135 “Imagerie Fonctionnelle”ToursFrance
  3. 3.CHRU BretonneauService d’Oncologie MédicaleToursFrance
  4. 4.Laboratoire de Pharmacie GaléniqueUFR de PharmacieToursFrance

Personalised recommendations